25 research outputs found

    硫化水素とポリサルファイドの産生機構

    No full text

    Production of Hydrogen Sulfide from D-Cysteine and Its Therapeutic Potential

    Get PDF
    Accumulating evidence shows that H2S has physiological functions in various tissues and organs. It includes regulation of neuronal activity, vascular tension, a release of insulin, and protection of the heart, kidney and brain from ischemic insult. H2S is produced by enzymes from L-cysteine; cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST) along with cysteine aminotransferase (CAT). We recently discovered an additional pathway for the production of H2S from D-cysteine. D-Amino acid oxidase (DAO) provides 3-mercaptopyruvate (3MP) for 3MST to produce H2S. D-Cysteine protects cerebellar neurons from oxidative stress and attenuates ischemia-reperfusion injury caused in the kidney more effectively than L-cysteine. This review focuses on a novel pathway for the production of H2S and its therapeutic application especially to the renal diseases

    Structural variant of the intergenic internal ribosome entry site elements in dicistroviruses and computational search for their counterparts

    No full text
    The intergenic region (IGR) located upstream of the capsid protein gene in dicistroviruses contains an internal ribosome entry site (IRES). Translation initiation mediated by the IRES does not require initiator methionine tRNA. Comparison of the IGRs among dicistroviruses suggested that Taura syndrome virus (TSV) and acute bee paralysis virus have an extra side stem loop in the predicted IRES. We examined whether the side stem is responsible for translation activity mediated by the IGR using constructs with compensatory mutations. In vitro translation analysis showed that TSV has an IGR-IRES that is structurally distinct from those previously described. Because IGR-IRES elements determine the translation initiation site by virtue of their own tertiary structure formation, the discovery of this initiation mechanism suggests the possibility that eukaryotic mRNAs might have more extensive coding regions than previously predicted. To test this hypothesis, we searched full-length cDNA databases and whole genome sequences of eukaryotes using the pattern matching program, Scan For Matches, with parameters that can extract sequences containing secondary structure elements resembling those of IGR-IRES. Our search yielded several sequences, but their predicted secondary structures were suggested to be unstable in comparison to those of dicistroviruses. These results suggest that RNAs structurally similar to dicistroviruses are not common. If some eukaryotic mRNAs are translated independently of an initiator methionine tRNA, their structures are likely to be significantly distinct from those of dicistroviruses

    Conditional Rather than Absolute Requirements of the Capsid Coding Sequence for Initiation of Methionine-Independent Translation in Plautia stali Intestine Virus

    No full text
    The positive-stranded RNA genome of Plautia stali intestine virus (PSIV) has an internal ribosome entry site (IRES) in an intergenic region (IGR). The IGR-IRES of PSIV initiates translation of the capsid protein by using CAA, the codon for glutamine. It was previously reported (J. Sasaki and N. Nakashima, J. Virol. 73:1219-1226, 1999) that IGR-IRES extended by several nucleotides into the capsid open reading frame (ORF). Despite the fact that the secondary structure model of the IGR-IRES is highly conserved, we were unable to find structural similarities in the 5′ region of the capsid ORFs in related viruses. Therefore, we reevaluated the role of the capsid ORF in IGR-IRES-mediated translation in PSIV. Mutation of the CAA codon with various triplets did not inhibit IGR-IRES-mediated translation. N-terminal amino acid analyses of mutated products showed that the IGR-IRES could initiate translation by using various elongator tRNAs. By replacement of the capsid ORF with exogenous coding sequences having AUG deleted, translation products were produced in most cases, but capsid-exogenous fusion proteins were produced more efficiently than were the translation products. These data indicate that the 5′ part of the capsid ORF is not an absolute requirement for the IGR-IRES-mediated translation. RNA structure probing analyses showed that the 5′ part of the capsid ORF was a single strand, while that of exogenous reading frames was structured. Exogenous sequences also caused structural distortion in the 3′ part of the IGR-IRES. We hypothesize that the single-stranded capsid ORF helps to form the tertiary structure of the IGR-IRES and facilitates precise positioning of ribosomes

    HLA-DRB1*04:05 is involved in the development of Vogt–Koyanagi–Harada disease-like immune-related adverse events in patients receiving immune checkpoint inhibitors

    No full text
    Abstract Immune checkpoint inhibitors (ICIs) activate anti-tumor activity by inhibiting immune checkpoint molecules that suppress inflammatory T-cell activity. However, ICIs can initiate excessive immune responses, thereby causing immune-related adverse events (irAEs). ICI-associated uveitis (ICIU) is an irAE that affects the eyes. Although Vogt–Koyanagi–Harada disease (VKH)-like uveitis is a common form of ICIU, it is unclear which factors determine the ICIU form. We retrospectively reviewed the medical records of nine ICIU cases treated with ICIs for malignancies. We also performed HLA typing in seven cases to investigate the association between HLA and disease type. Fisher's exact test was used for the statistical analysis. Five of the ICIU cases were VKH-like ICIUs, and four were non-VKH-like ICIUs. No association was found between mean age, sex, primary disease, ICI, time to onset, and disease type. Four patients with VKH-like uveitis underwent HLA genotyping and were all positive for HLA-DRB1*04:05. All 3 patients with non-VKH-like uveitis were negative for HLA-DRB1*04:05. Statistical analysis showed that HLA-DRB1*04:05 was significantly associated with developing VKH-like ICIU (P = 0.029). In ICIU, HLA-DRB1*04:05 was associated with the pathogenesis of VKH-like uveitis, suggesting that ICI-associated VKH-like uveitis has a similar pathogenesis to VKH
    corecore