94 research outputs found
Molecular Mechanisms Behind the Chemopreventive Effects of Anthocyanidins
Anthocyanins are polyphenolic ring-based flavonoids, and are widespread in fruits and vegetables of red-blue color. Epidemiological investigations and animal experiments have indicated that anthocyanins may contribute to cancer chemoprevention. The studies on the mechanism have been done recently at molecular level. This review summarizes current molecular bases for anthocyanidins on several key steps involved in cancer chemoprevention: (i) inhibition of anthocyanidins in cell transformation through targeting mitogen-activated protein kinase (MAPK) pathway and activator protein 1 (AP-1) factor; (ii) suppression of anthocyanidins in inflammation and carcinogenesis through targeting nuclear factor kappa B (NF-κB) pathway and cyclooxygenase 2 (COX-2) gene; (iii) apoptotic induction of cancer cells by anthocyanidins through reactive oxygen species (ROS) / c-Jun NH(2)-terminal kinase (JNK)-mediated caspase activation. These data provide a first molecular view of anthocyanidins contributing to cancer chemoprevention
Impact of transport pathways on the time from symptom onset of ST-segment elevation myocardial infarction to door of coronary intervention facility
AbstractBackgroundReducing total ischemic time is important in achieving better outcome in ST-segment elevation myocardial infarction (STEMI). Although the onset-to-door (OTD) time accounts for a large portion of the total ischemic time, factors affecting prolongation of the OTD time are not established.PurposeThe purpose of this study was to determine the impact of transport pathways on OTD time in patients with STEMI.Methods and subjectsWe retrospectively studied 416 STEMI patients who were divided into 4 groups according to their transport pathways; Group 1 (n=41): self-transportation to percutaneous coronary intervention (PCI) facility; Group 2 (n=215): emergency medical service (EMS) transportation to PCI facility; Group 3 (n=103): self-transportation to non-PCI facility; and Group 4 (n=57): EMS transportation to non-PCI facility. OTD time was compared among the 4 groups.Essential resultsMedian OTD time for all groups combined was 113 (63–228.8)min [Group 1, 145 (70–256.5); Group 2, 71 (49–108); Group 3, 260 (142–433); and Group 4, 184 (130–256)min]. OTD time for EMS users (Groups 2 and 4) was 138min shorter than non-EMS users (Groups 1 and 3). Inter-hospital transportation (Groups 3 and 4) prolonged OTD by a median of 132min compared with direct transportation to PCI facility (Groups 1 and 2). Older age, history of myocardial infarction, prior PCI, shock at onset, high Killip classification, and high GRACE Risk Score were significantly more frequent in EMS users.Principal conclusionsSelf-transportation without EMS and inter-hospital transportation were significant factors causing prolongation of the OTD time. Approximately 35% of STEMI patients did not use EMS and 21% of patients were transported to non-PCI facilities even though they called EMS. Awareness in the community as well as among medical professionals to reduce total ischemic time of STEMI is necessary; this involves educating the general public and EMS crews
Hedgehog Promotes Neovascularization in Pancreatic Cancers by Regulating Ang-1 and IGF-1 Expression in Bone-Marrow Derived Pro-Angiogenic Cells
http://creativecommons.org/licenses/by/2.0/
PublisherBackground: The hedgehog (Hh) pathway has been implicated in the pathogenesis of cancer including pancreatic ductal adenocarcinoma (PDAC). Recent studies have suggested that the oncogenic function of Hh in PDAC involves signaling in the stromal cells rather than cell autonomous effects on the tumor cells. However, the origin and nature of the stromal cell type(s) that are responsive to Hh signaling remained unknown. Since Hh signaling plays a crucial role during embryonic and postnatal vasculogenesis, we speculated that Hh ligand may act on tumor vasculature specifically focusing on bone marrow (BM)-derived cells. Methodology/Principal Findings: Cyclopamine was utilized to inhibit the Hh pathway in human PDAC cell lines and their xenografts. BM transplants, co-culture systems of tumor cells and BM-derived pro-angiogenic cells (BMPCs) were employed to assess the role of tumor-derived Hh in regulating the BM compartment and the contribution of BM-derived cells to angiogenesis in PDAC. Cyclopamine administration attenuated Hh signaling in the stroma rather than in the cancer cells as reflected by decreased expression of full length Gli2 protein and Gli1 mRNA specifically in the compartment. Cyclopamine inhibited the growth of PDAC xenografts in association with regression of the tumor vasculature and reduced homing of BM-derived cells to the tumor. Host-derived Ang-1 and IGF-1 mRNA levels were downregulated by cyclopamine in the tumor xenografts. In vitro co-culture and matrigel plug assays demonstrated that PDAC cell-derived Shh induced Ang-1 and IGF-1 production in BMPCs, resulting in their enhanced migration and capillary morphogenesis activity. Conclusions/Significance: We identified the BMPCs as alternative stromal targets of Hh-ligand in PDAC suggesting that the tumor vasculature is an attractive therapeutic target of Hh blockade. Our data is consistent with the emerging concept that BM-derived cells make important contributions to epithelial tumorigenesis
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
Kinetics of Isomerization and Inversion of Aspartate 58 of αA-Crystallin Peptide Mimics under Physiological Conditions
<div><p>Although proteins consist exclusively of L-amino acids, we have reported that aspartyl (Asp) 58 and Asp 151 residues of αA-crystallin of eye lenses from elderly cataract donors are highly inverted and isomerized to D-β, D-α and L-β-Asp residues through succinimide intermediates. Of these Asp isomers, large amounts of D-β- and L-β-isomers are present but the amount of D-α-isomer is not significant. The difference in abundance of the Asp isomers in the protein may be due to the rate constants for the formation of the isomers. However, the kinetics have not been well defined. Therefore, in this study, we synthesized a peptide corresponding to human αA-crystallin residues 55 to 65 (T<sup>55</sup>VLD<sup>58</sup>SGISEVR<sup>65</sup>) and its isomers in which L-α-Asp at position 58 was replaced with L-β-, D-β- and D-α-Asp and determined the rate of isomerization and inversion of Asp residues under physiological conditions (37°C, pH7.4). The rate constant for dehydration from L-α-Asp peptide to L-succinimidyl peptide was 3 times higher than the rate constant for dehydration from L-β-Asp peptide to L-succinimidyl peptide. The rate constant for hydrolysis from L-succinimidyl peptide to L-β-Asp peptide was about 5 times higher than the rate constant for hydrolysis from L-succinimidyl peptide to L-α-Asp peptide. The rate constant for dehydration from L-α-Asp peptide to L-succinimidyl peptide was 2 times higher than the rate constant for dehydration from D-α-Asp peptide to D-succinimidyl peptide. The rate constants for hydrolysis from L-succinimidyl peptide to L-β-Asp peptide and for hydrolysis from D-succinimidyl peptide to D-β-Asp peptide were almost equal. Using these rate constants, we calculated the change in the abundance ratios of the 4 Asp isomers during a human lifespan. This result is consistent with the fact that isomerized Asp residues accumulate in proteins during the ageing process.</p> </div
Racemization of succinimide.
<p><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0058515#pone-0058515-g006" target="_blank">Figure 6a:</a> increase of D-Asp with racemization of L-suc peptide at 37°C. <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0058515#pone-0058515-g006" target="_blank">Figure 6b:</a> increase of L-Asp with racemization of D-suc peptide at 37°C. We calculated the rate constant for racemization of succinimide at 37°C (k9 and k10) by using fitted curves in this figure.</p
- …