6 research outputs found

    Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Get PDF
    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans

    Time to Return to Play After High Ankle Sprains in Collegiate Football Players

    Get PDF
    Many scientific applications have large I/O requirements, in terms of both the size of data and the number of files or data sets. Management, storage, efficient access, and analysis of this data present an extremely challenging task. Traditionally, two different solutions are used for this problem: file I/O or databases. File I/O can provide high performance but is tedious to use with large numbers of files and large and complex data sets. Databases can be convenient, flexible, and powerful but do not perform and scale well for parallel supercomputing applications. We have developed a software system, called Scientific Data Manager (SDM), that aims to combine the good features of both file I/O and databases. SDM provides a high-level API to the user and, internally, uses a parallel file system to store real data and a database to store application-related metadata. SDM takes advantage of various I/O optimizations available in MPI-IO, such as collective I/O and noncontiguous requests, in a manner that is transparent to the user. As a result, users can write and retrieve data with the performance of parallel file I/O, without having to bother with the details of actually performing file I/O. In this paper, we describe the design and implementation of SDM. With the help of two parallel application templates, ASTRO3D and an Euler solver, we illustrate how some of the design criteria affect performance. 0-7803-9802-5/2000/$10.00 c 2000 IEE
    corecore