12 research outputs found

    The Solar Test of the Equivalence Principle

    Get PDF
    The Earth, Mars, Sun, Jupiter system allows for a sensitive test of the strong equivalence principle (SEP) which is qualitatively different from that provided by Lunar Laser Ranging. Using analytic and numerical methods we demonstrate that Earth-Mars ranging can provide a useful estimate of the SEP parameter η\eta. Two estimates of the predicted accuracy are derived and quoted, one based on conventional covariance analysis, and another (called ``modified worst case'' analysis) which assumes that systematic errors dominate the experiment. If future Mars missions provide ranging measurements with an accuracy of σ\sigma meters, after ten years of ranging the expected accuracy for the SEP parameter η\eta will be of order (1−12)×10−4σ(1-12)\times 10^{-4}\sigma. These ranging measurements will also provide the most accurate determination of the mass of Jupiter, independent of the SEP effect test.Comment: 10 pages; LaTeX; three figures upon reques

    Experimental Design for the LATOR Mission

    Full text link
    This paper discusses experimental design for the Laser Astrometric Test Of Relativity (LATOR) mission. LATOR is designed to reach unprecedented accuracy of 1 part in 10^8 in measuring the curvature of the solar gravitational field as given by the value of the key Eddington post-Newtonian parameter \gamma. This mission will demonstrate the accuracy needed to measure effects of the next post-Newtonian order (~G^2) of light deflection resulting from gravity's intrinsic non-linearity. LATOR will provide the first precise measurement of the solar quadrupole moment parameter, J2, and will improve determination of a variety of relativistic effects including Lense-Thirring precession. The mission will benefit from the recent progress in the optical communication technologies -- the immediate and natural step above the standard radio-metric techniques. The key element of LATOR is a geometric redundancy provided by the laser ranging and long-baseline optical interferometry. We discuss the mission and optical designs, as well as the expected performance of this proposed mission. LATOR will lead to very robust advances in the tests of Fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity experiments.Comment: 16 pages, 17 figures, invited talk given at ``The 2004 NASA/JPL Workshop on Physics for Planetary Exploration.'' April 20-22, 2004, Solvang, C

    The Laser Astrometric Test of Relativity Mission

    Get PDF
    This paper discusses new fundamental physics experiment to test relativistic gravity at the accuracy better than the effects of the 2nd order in the gravitational field strength. The Laser Astrometric Test Of Relativity (LATOR) mission uses laser interferometry between two micro-spacecraft whose lines of sight pass close by the Sun to accurately measure deflection of light in the solar gravity. The key element of the experimental design is a redundant geometry optical truss provided by a long-baseline (100 m) multi-channel stellar optical interferometer placed on the International Space Station. The geometric redundancy enables LATOR to measure the departure from Euclidean geometry caused by the solar gravity field to a very high accuracy. LATOR will not only improve the value of the parameterized post-Newtonian (PPN) parameter gamma to unprecedented levels of accuracy of 1 part in 1e8, it will also reach ability to measure effects of the next post-Newtonian order (1/c^4) of light deflection resulting from gravity's intrinsic non-linearity. The solar quadrupole moment parameter, J2, will be measured with high precision, as well as a variety of other relativistic. LATOR will lead to very robust advances in the tests of fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity experiments.Comment: 8 pages, 2 figures, invited talk given at the Second International Conference on Particle and Fundamental Physics in Space (SpacePart'03), 10-12 December 2003, Washington, D
    corecore