2,568 research outputs found
Conceptual design and feasibility evaluation model of a 10 to the 8th power bit oligatomic mass memory. Volume 2: Feasibility evaluation model
The partially populated oligatomic mass memory feasibility model is described and evaluated. A system was desired to verify the feasibility of the oligatomic (mirror) memory approach as applicable to large scale solid state mass memories
Geology of a Kyanite Deposit Near Ennis, Montana
A deposit of kyanite, an aluminum silicate mineral used in the ceramic industry, occurs in the low foothills of the Gravelly range about 10 miles south of Ennis, Montana. This study deals primarily with the character and origin of the deposit, and its relationship to the surrounding rocks
Conceptual design and feasibility evaluation model of a 10 to the 8th power bit oligatomic mass memory. Volume 3: Operation manual
An operation manual is presented for the oligatomic mass memory feasibility model. It includes a brief description of the memory and exerciser units, a description of the controls and their functions, the operating procedures, the test points and adjustments, and the circuit diagram
Magnetic Order Beyond RKKY in the Classical Kondo Lattice
We study the Kondo lattice model of band electrons coupled to classical
spins, in three dimensions, using a combination of variational calculation and
Monte Carlo. We use the weak coupling `RKKY' window and the strong coupling
regime as benchmarks, but focus on the physically relevant intermediate
coupling regime. Even for modest electron-spin coupling the phase boundaries
move away from the RKKY results, the non interacting Fermi surface no longer
dictates magnetic order, and weak coupling `spiral' phases give way to
collinear order. We use these results to revisit the classic problem of 4f
magnetism and demonstrate how both electronic structure and coupling effects
beyond RKKY control the magnetism in these materials.Comment: 6 pages, 4 figs. Improved figures, expanded captions. To appear in
Europhys. Let
Spin-dynamic field coupling in strongly THz driven semiconductors : local inversion symmetry breaking
We study theoretically the optics in undoped direct gap semiconductors which
are strongly driven in the THz regime. We calculate the optical sideband
generation due to nonlinear mixing of the THz field and the near infrared
probe. Starting with an inversion symmetric microscopic Hamiltonian we include
the THz field nonperturbatively using non-equilibrium Green function
techniques. We find that a self induced relativistic spin-THz field coupling
locally breaks the inversion symmetry, resulting in the formation of odd
sidebands which otherwise are absent.Comment: 8 pages, 6 figure
Stiff Stability of the Hydrogen atom in dissipative Fokker electrodynamics
We introduce an ad-hoc electrodynamics with advanced and retarded
Lienard-Wiechert interactions plus the dissipative Lorentz-Dirac
self-interaction force. We study the covariant dynamical system of the
electromagnetic two-body problem, i.e., the hydrogen atom. We perform the
linear stability analysis of circular orbits for oscillations perpendicular to
the orbital plane. In particular we study the normal modes of the linearized
dynamics that have an arbitrarily large imaginary eigenvalue. These large
eigenvalues are fast frequencies that introduce a fast (stiff) timescale into
the dynamics. As an application, we study the phenomenon of resonant
dissipation, i.e., a motion where both particles recoil together in a drifting
circular orbit (a bound state), while the atom dissipates center-of-mass energy
only. This balancing of the stiff dynamics is established by the existence of a
quartic resonant constant that locks the dynamics to the neighborhood of the
recoiling circular orbit. The resonance condition quantizes the angular momenta
in reasonable agreement with the Bohr atom. The principal result is that the
emission lines of quantum electrodynamics (QED) agree with the prediction of
our resonance condition within one percent average deviation.Comment: 1 figure, Notice that Eq. (34) of the Phys. Rev. E paper has a typo;
it is missing the square Brackets of eq. (33), find here the correct e
Effect of Al mole fraction on carrier diffusion lengths and lifetimes in AlxGa1−xAs
The ambipolar diffusion length and carrier lifetime are measured in AlxGa1−xAs for several mole fractions in the interval 0<x<0.38. These parameters are found to have significantly higher values in the higher mole fraction samples. These increases are attributed to occupation of states in the indirect valleys, and supporting calculations are presented
First Principles Study of Zn-Sb Thermoelectrics
We report first principles LDA calculations of the electronic structure and
thermoelectric properties of -ZnSb. The material is found
to be a low carrier density metal with a complex Fermi surface topology and
non-trivial dependence of Hall concentration on band filling. The band
structure is rather covalent, consistent with experimental observations of good
carrier mobility. Calculations of the variation with band filling are used to
extract the doping level (band filling) from the experimental Hall number. At
this band filling, which actually corresponds to 0.1 electrons per 22 atom unit
cell, the calculated thermopower and its temperature dependence are in good
agreement with experiment. The high Seebeck coefficient in a metallic material
is remarkable, and arises in part from the strong energy dependence of the
Fermiology near the experimental band filling. Improved thermoelectric
performance is predicted for lower doping levels which corresponds to higher Zn
concentrations.Comment: 5 pages, 6 figure
A double-lined spectroscopic orbit for the young star HD 34700
We report high-resolution spectroscopic observations of the young star HD
34700, which confirm it to be a double-lined spectroscopic binary. We derive an
accurate orbital solution with a period of 23.4877 +/- 0.0013 days and an
eccentricity of e = 0.2501 +/- 0.0068. The stars are found to be of similar
mass (M2/M1 = 0.987 +/- 0.014) and luminosity. We derive also the effective
temperatures (5900 K and 5800 K) and projected rotational velocities (28 km/s
and 22 km/s) of the components. These values of v sin i are much higher than
expected for main-sequence stars of similar spectral type (G0), and are not due
to tidal synchronization. We discuss also the indicators of youth available for
the object. Although there is considerable evidence that the system is young
--strong infrared excess, X-ray emission, Li I 6708 absorption (0.17 Angstroms
equivalent width), H alpha emission (0.6 Angstroms), rapid rotation-- the
precise age cannot yet be established because the distance is unknown.Comment: 17 pages, including 2 figures and 2 tables. Accepted for publication
in AJ, to appear in February 200
- …
