2,568 research outputs found

    Conceptual design and feasibility evaluation model of a 10 to the 8th power bit oligatomic mass memory. Volume 2: Feasibility evaluation model

    Get PDF
    The partially populated oligatomic mass memory feasibility model is described and evaluated. A system was desired to verify the feasibility of the oligatomic (mirror) memory approach as applicable to large scale solid state mass memories

    Geology of a Kyanite Deposit Near Ennis, Montana

    Get PDF
    A deposit of kyanite, an aluminum silicate mineral used in the ceramic industry, occurs in the low foothills of the Gravelly range about 10 miles south of Ennis, Montana. This study deals primarily with the character and origin of the deposit, and its relationship to the surrounding rocks

    Conceptual design and feasibility evaluation model of a 10 to the 8th power bit oligatomic mass memory. Volume 3: Operation manual

    Get PDF
    An operation manual is presented for the oligatomic mass memory feasibility model. It includes a brief description of the memory and exerciser units, a description of the controls and their functions, the operating procedures, the test points and adjustments, and the circuit diagram

    Magnetic Order Beyond RKKY in the Classical Kondo Lattice

    Full text link
    We study the Kondo lattice model of band electrons coupled to classical spins, in three dimensions, using a combination of variational calculation and Monte Carlo. We use the weak coupling `RKKY' window and the strong coupling regime as benchmarks, but focus on the physically relevant intermediate coupling regime. Even for modest electron-spin coupling the phase boundaries move away from the RKKY results, the non interacting Fermi surface no longer dictates magnetic order, and weak coupling `spiral' phases give way to collinear order. We use these results to revisit the classic problem of 4f magnetism and demonstrate how both electronic structure and coupling effects beyond RKKY control the magnetism in these materials.Comment: 6 pages, 4 figs. Improved figures, expanded captions. To appear in Europhys. Let

    Spin-dynamic field coupling in strongly THz driven semiconductors : local inversion symmetry breaking

    Full text link
    We study theoretically the optics in undoped direct gap semiconductors which are strongly driven in the THz regime. We calculate the optical sideband generation due to nonlinear mixing of the THz field and the near infrared probe. Starting with an inversion symmetric microscopic Hamiltonian we include the THz field nonperturbatively using non-equilibrium Green function techniques. We find that a self induced relativistic spin-THz field coupling locally breaks the inversion symmetry, resulting in the formation of odd sidebands which otherwise are absent.Comment: 8 pages, 6 figure

    Stiff Stability of the Hydrogen atom in dissipative Fokker electrodynamics

    Full text link
    We introduce an ad-hoc electrodynamics with advanced and retarded Lienard-Wiechert interactions plus the dissipative Lorentz-Dirac self-interaction force. We study the covariant dynamical system of the electromagnetic two-body problem, i.e., the hydrogen atom. We perform the linear stability analysis of circular orbits for oscillations perpendicular to the orbital plane. In particular we study the normal modes of the linearized dynamics that have an arbitrarily large imaginary eigenvalue. These large eigenvalues are fast frequencies that introduce a fast (stiff) timescale into the dynamics. As an application, we study the phenomenon of resonant dissipation, i.e., a motion where both particles recoil together in a drifting circular orbit (a bound state), while the atom dissipates center-of-mass energy only. This balancing of the stiff dynamics is established by the existence of a quartic resonant constant that locks the dynamics to the neighborhood of the recoiling circular orbit. The resonance condition quantizes the angular momenta in reasonable agreement with the Bohr atom. The principal result is that the emission lines of quantum electrodynamics (QED) agree with the prediction of our resonance condition within one percent average deviation.Comment: 1 figure, Notice that Eq. (34) of the Phys. Rev. E paper has a typo; it is missing the square Brackets of eq. (33), find here the correct e

    Effect of Al mole fraction on carrier diffusion lengths and lifetimes in AlxGa1−xAs

    Get PDF
    The ambipolar diffusion length and carrier lifetime are measured in AlxGa1−xAs for several mole fractions in the interval 0<x<0.38. These parameters are found to have significantly higher values in the higher mole fraction samples. These increases are attributed to occupation of states in the indirect valleys, and supporting calculations are presented

    First Principles Study of Zn-Sb Thermoelectrics

    Full text link
    We report first principles LDA calculations of the electronic structure and thermoelectric properties of β\beta -Zn4_{4}Sb3_{3}. The material is found to be a low carrier density metal with a complex Fermi surface topology and non-trivial dependence of Hall concentration on band filling. The band structure is rather covalent, consistent with experimental observations of good carrier mobility. Calculations of the variation with band filling are used to extract the doping level (band filling) from the experimental Hall number. At this band filling, which actually corresponds to 0.1 electrons per 22 atom unit cell, the calculated thermopower and its temperature dependence are in good agreement with experiment. The high Seebeck coefficient in a metallic material is remarkable, and arises in part from the strong energy dependence of the Fermiology near the experimental band filling. Improved thermoelectric performance is predicted for lower doping levels which corresponds to higher Zn concentrations.Comment: 5 pages, 6 figure

    A double-lined spectroscopic orbit for the young star HD 34700

    Full text link
    We report high-resolution spectroscopic observations of the young star HD 34700, which confirm it to be a double-lined spectroscopic binary. We derive an accurate orbital solution with a period of 23.4877 +/- 0.0013 days and an eccentricity of e = 0.2501 +/- 0.0068. The stars are found to be of similar mass (M2/M1 = 0.987 +/- 0.014) and luminosity. We derive also the effective temperatures (5900 K and 5800 K) and projected rotational velocities (28 km/s and 22 km/s) of the components. These values of v sin i are much higher than expected for main-sequence stars of similar spectral type (G0), and are not due to tidal synchronization. We discuss also the indicators of youth available for the object. Although there is considerable evidence that the system is young --strong infrared excess, X-ray emission, Li I 6708 absorption (0.17 Angstroms equivalent width), H alpha emission (0.6 Angstroms), rapid rotation-- the precise age cannot yet be established because the distance is unknown.Comment: 17 pages, including 2 figures and 2 tables. Accepted for publication in AJ, to appear in February 200
    corecore