239 research outputs found

    Atomistic spin dynamic method with both damping and moment of inertia effects included from first principles

    Full text link
    We consider spin dynamics for implementation in an atomistic framework and we address the feasibility of capturing processes in the femtosecond regime by inclusion of moment of inertia. In the spirit of an {\it s-d} -like interaction between the magnetization and electron spin, we derive a generalized equation of motion for the magnetization dynamics in the semi-classical limit, which is non-local in both space and time. Using this result we retain a generalized Landau-Lifshitz-Gilbert equation, also including the moment of inertia, and demonstrate how the exchange interaction, damping, and moment of inertia, all can be calculated from first principles.Comment: 5 pages, 1 figur

    Current driven magnetization dynamics in helical spin density waves

    Full text link
    A mechanism is proposed for manipulating the magnetic state of a helical spin density wave using a current. In this paper, we show that a current through a bulk system with a helical spin density wave induces a spin transfer torque, giving rise to a rotation of the order parameter.The use of spin transfer torque to manipulate the magnetization in bulk systems does not suffer from the obstacles seen for magnetization reversal using interface spin transfer torque in multilayered systems. We demonstrate the effect by a quantitative calculation of the current induced magnetization dynamics of Erbium. Finally we propose a setup for experimental verification.Comment: In the previous version of this paper was a small numerical mistake made when evaluating equation 3 and 9. The number of digits given in the calculation of the torque current tensor is reduced to better represent the accuracy of the calculation. A slightly modified paper have been published in Phys. Rev. Lett. 96, 256601 (2006) 4 pages 3 figure

    Multipole decomposition of LDA+UU energy and its application to actinides compounds

    Full text link
    A general reformulation of the exchange energy of 5f5f-shell is applied in the analysis of the magnetic structure of various actinides compounds in the framework of LDA+U method. The calculations are performed in an efficient scheme with essentially only one free parameter, the screening length. The results are analysed in terms of different polarisation channels, due to different multipoles. Generally it is found that the spin-orbital polarisation is dominating. This can be viewed as a strong enhancement of the spin-orbit coupling in these systems. This leads to a drastic decrease in spin polarisation, in accordance with experiments. The calculations are able to correctly differentiate magnetic and non-magnetic Pu system. Finally, in all magnetic systems a new multipolar order is observed, whose polarisation energy is often larger in magnitude than that of spin polarisation.Comment: Fixed some references and picture

    Exchange energy dominated by large orbital spin-currents in δ\delta-Pu

    Full text link
    The electronic structure of the anomalous δ\delta-phase of Pu is analyzed by a general and exact reformulation of the exchange energy of the ff-shell. It is found that the dominating contribution to the exchange energy is a polarization of orbital spin-currents that preserves the time reversal symmetry, hence a non-magnetic solution in accordance with experiments. The analysis brings a unifying picture of the role of exchange in the 5f5f-shell with its relatively strong spin-orbit coupling. The results are in good accordance with recent measurements of the branching ratio for the dd to ff transition in the actinides.Comment: 6 pages, 1 figure, 2 table

    Itinerant magnetic multipole moments of rank five, triakontadipoles, as the hidden order in URu2_{2}Si2_{2}

    Full text link
    A broken symmetry ground state without any magnetic moments has been calculated by means of local-density-approximation to density functional theory plus a local exchange term, the so-called LDA+UU approach, for URu2_{2}Si2_{2}. The solution is analysed in terms of a multipole tensor expansion of the itinerant density matrix and is found to be a non-trivial magnetic multipole. Analysis and further calculations show that this type of multipole enters naturally in time reversal breaking in presence of large effective spin-orbit coupling and co-exists with magnetic moments for most magnetic actinidesComment: 5 pages, 3 figure

    The Fermi Surface Effect on Magnetic Interlayer Coupling

    Full text link
    The oscillating magnetic interlayer coupling of Fe over spacer layers consisting of Cux_{x}Pd1x_{1-x} alloys is investigated by first principles density functional theory. The amplitude, period and phase of the coupling, as well as the disorder-induced decay, are analyzed in detail and the consistency to the Ruderman-Kittel-Kasuya-Yoshida (RKKY) theory is discussed. For the first time an effect of the Fermi surface nesting strength on the amplitude is established from first principles calculations. An unexpected variation of the phase and disorder-induced decay is obtained and the results are discussed in terms of asymptotics
    corecore