193 research outputs found

    Ultraviolet Imaging Polarimetry of the Large Magellanic Cloud. II. Models

    Get PDF
    Motivated by new sounding-rocket wide-field polarimetric images of the Large Magellanic Cloud, we have used a three-dimensional Monte Carlo radiation transfer code to investigate the escape of near-ultraviolet photons from young stellar associations embedded within a disk of dusty material (i.e. a galaxy). As photons propagate through the disk, they may be scattered or absorbed by dust. Scattered photons are polarized and tracked until they escape to be observed; absorbed photons heat the dust, which radiates isotropically in the far-infrared, where the galaxy is optically thin. The code produces four output images: near- UV and far-IR flux, and near-UV images in the linear Stokes parameters Q and U. From these images we construct simulated UV polarization maps of the LMC. We use these maps to place constraints on the star + dust geometry of the LMC and the optical properties of its dust grains. By tuning the model input parameters to produce maps that match the observed polarization maps, we derive information about the inclination of the LMC disk to the plane of the sky, and about the scattering phase function g. We compute a grid of models with i = 28 deg., 36 deg., and 45 deg., and g = 0.64, 0.70, 0.77, 0.83, and 0.90. The model which best reproduces the observed polarization maps has i = 36 +2/-5 degrees and g ~0.7. Because of the low signal-to-noise in the data, we cannot place firm constraints on the value of g. The highly inclined models do not match the observed centro-symmetric polarization patterns around bright OB associations, or the distribution of polarization values. Our models approximately reproduce the observed ultraviolet photopolarimetry of the western side of the LMC; however, the output images depend on many input parameters and are nonunique.Comment: Accepted to AJ. 20 pages, 7 figure

    Recombination Ghosts in Littrow Configuration: Implications for Spectrographs Using Volume Phase Holographic Gratings

    Full text link
    We report the discovery of optical ghosts generated when using Volume Phase Holographic (VPH) gratings in spectrographs employing the Littrow configuration. The ghost is caused by light reflected off the detector surface, recollimated by the camera, recombined by, and reflected from, the grating and reimaged by the camera onto the detector. This recombination can occur in two different ways. We observe this ghost in two spectrographs being developed by the University of Wisconsin - Madison: the Robert Stobie Spectrograph for the Southern African Large Telescope and the Bench Spectrograph for the WIYN 3.5m telescope. The typical ratio of the brightness of the ghost relative to the integrated flux of the spectrum is of order 10^-4, implying a recombination efficiency of the VPH gratings of order 10^-3 or higher, consistent with the output of rigorous coupled wave analysis. Any spectrograph employing VPH gratings, including grisms, in Littrow configuration will suffer from this ghost, though the general effect is not intrinsic to VPH gratings themselves and has been observed in systems with conventional gratings in non-Littrow configurations. We explain the geometric configurations that can result in the ghost as well as a more general prescription for predicting its position and brightness on the detector. We make recommendations for mitigating the ghost effects for spectrographs and gratings currently built. We further suggest design modifications for future VPH gratings to eliminate the problem entirely, including tilted fringes and/or prismatic substrates. We discuss the resultant implications on the spectrograph performance metrics.Comment: 13 pages, 8 figures, emulateapj style, accepted for publication in PAS

    INVESTIGATION OF THE MECHANISMS OF HEAT EXCHANGER CORROSION IN A MUNICIPAL WASTE INCINERATION PLANT BY ANALYSIS OF THE RAW GAS AND VARIATION OF OPERATING PARAMETERS

    Get PDF
    The detailed mechanism of high temperature chlorine corrosion, the dominant cause of corrosion in a municipal solid waste incinerator (MSI), has still to be clarified (Schroer, 2002). Upon its way through the boiler the raw gas is subject to various physical and chemical processes and interactions. Of these, sulphation of chlorides is supposed to have the major impact on chlorine corrosion (Neumann, 1997). The physical and chemical mechanisms of corrosion were investigated at a municipal solid waste incinerator. Both, the particulate and gas phase of the flue gas, were chemically and physically analyzed during their way through the boiler, at temperatures from close to 1000 °C down to 200 °C. The raw gas composition was analyzed during normal operation and soot blowing cleaning routine. Additionally, operating parameters of the plant were varied, and deposition processes were evaluated with the aim to find out primary measures to reduce corrosion rates. The particle mass concentration exhibits a bimodal size distribution with maxima at approximately 0.5 μm – growing by duration of travel – and 100 μm. First results show that sulphation of the particles can be observed upon travel through the boiler and on the fouling. Sulphur containing additives increased the sulphation of the particles during flight though not to completion

    Optical Follow-up of New SMC Wing Be/X-ray Binaries

    Full text link
    We investigate the optical counterparts of recently discovered Be/X-ray binaries in the Small Magellanic Cloud. In total four sources, SXP101, SXP700, SXP348 and SXP65.8 were detected during the Chandra Survey of the Wing of the SMC. SXP700 and SXP65.8 were previously unknown. Many optical ground based telescopes have been utilised in the optical follow-up, providing coverage in both the red and blue bands. This has led to the classification of all of the counterparts as Be stars and confirms that three lie within the Galactic spectral distribution of known Be/X-ray binaries. SXP101 lies outside this distribution becoming the latest spectral type known. Monitoring of the Halpha emission line suggests that all the sources bar SXP700 have highly variable circumstellar disks, possibly a result of their comparatively short orbital periods. Phase resolved X-ray spectroscopy has also been performed on SXP65.8, revealing that the emission is indeed harder during the passage of the X-ray beam through the line of sight.Comment: 9 pages, 9 figures, 2 tables, accepted for publication in MNRA

    The NIR Upgrade to the SALT Robert Stobie Spectrograph

    Get PDF
    The near infrared (NIR) upgrade to the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT), RSS/NIR, extends the spectral coverage of all modes of the visible arm. The RSS/NIR is a low to medium resolution spectrograph with broadband imaging, spectropolarimetric, and Fabry-Perot imaging capabilities. The visible and NIR arms can be used simultaneously to extend spectral coverage from approximately 3200 A to 1.6 um. Both arms utilize high efficiency volume phase holographic gratings via articulating gratings and cameras. The NIR camera is designed around a 2048x2048 HAWAII-2RG detector housed in a cryogenic dewar. The Epps optical design of the camera consists of 6 spherical elements, providing sub-pixel rms image sizes of 7.5 +/- 1.0 um over all wavelengths and field angles. The exact long wavelength cutoff is yet to be determined in a detailed thermal analysis and will depend on the semi-warm instrument cooling scheme. Initial estimates place instrument limiting magnitudes at J = 23.4 and H(1.4-1.6 um) = 21.6 for S/N = 3 in a 1 hour exposure well below the sky noise.Comment: 12 pages, 10 figures, presented at SPIE, Astronomical Telescopes and Instrumentation, 24 - 31 May 2006, Orlando, Florida US

    The Hanle Effect as a Diagnostic of Magnetic Fields in Stellar Envelopes IV. Application to Polarized P Cygni Wind Lines

    Full text link
    The Hanle effect has been proposed as a new diagnostic of circumstellar magnetic fields for early-type stars, for which it is sensitive to field strengths in the 1-300 G range. In this paper we compute the polarized P-Cygni line profiles that result from the Hanle effect. For modeling the polarization, we employ a variant of the ``last scattering approximation''. For cases in which the Sobolev optical depths are greater than unity, the emergent line intensity is assumed to be unpolarized; while for smaller optical depths, the Stokes source functions for the Hanle effect with optically thin line scattering are used. For a typical P Cygni line, the polarized emission forms in the outer wind, because the Sobolev optical depth is large at the inner wind. For low surface field strengths, weak P Cygni lines are needed to measure the circumstellar field. For high values of the surface fields, both the Zeeman and Hanle diagnostics can be used, with the Zeeman effect probing the photospheric magnetic fields, and the Hanle effect measuring the magnetic field in the wind flow. Polarized line profiles are calculated for a self-consistent structure of the flow and the magnetic geometry based on the WCFields model, which is applicable to slowly rotating stellar winds with magnetic fields drawn out by the gas flow. For surface fields of a few hundred Gauss, we find that the Hanle effect can produce line polarizations in the range of a few tenths of a percent up to about 2 percent.Comment: accepted to the Astrophysical Journa
    • …
    corecore