5 research outputs found

    Bispecific T cell-engager targeting oncofetal chondroitin sulfate induces complete tumor regression and protective immune memory in mice

    No full text
    Abstract Background The malaria protein VAR2CSA binds oncofetal chondroitin sulfate (ofCS), a unique chondroitin sulfate, expressed on almost all mammalian cancer cells. Previously, we produced a bispecific construct targeting ofCS and human T cells based on VAR2CSA and anti-CD3 (V-aCD3Hu). V-aCD3Hu showed efficacy against xenografted tumors in immunocompromised mice injected with human immune cells at the tumor site. However, the complex effects potentially exerted by the immune system as a result of the treatment cannot occur in mice without an immune system. Here we investigate the efficacy of V-aCD3Mu as a monotherapy and combined with immune checkpoint inhibitors in mice with a fully functional immune system. Methods We produced a bispecific construct consisting of a recombinant version of VAR2CSA coupled to an anti-murine CD3 single-chain variable fragment. Flow cytometry and ELISA were used to check cell binding capabilities and the therapeutic effect was evaluated in vitro in a killing assay. The in vivo efficacy of V-aCD3Mu was then investigated in mice with a functional immune system and established or primary syngeneic tumors in the immunologically “cold” 4T1 mammary carcinoma, B16-F10 malignant melanoma, the pancreatic KPC mouse model, and in the immunologically “hot” CT26 colon carcinoma model. Results V-aCD3Mu had efficacy as a monotherapy, and the combined treatment of V-aCD3Mu and an immune checkpoint inhibitor showed enhanced effects resulting in the complete elimination of solid tumors in the 4T1, B16-F10, and CT26 models. This anti-tumor effect was abscopal and accompanied by a systemic increase in memory and activated cytotoxic and helper T cells. The combined treatment also led to a higher percentage of memory T cells in the tumor without an increase in regulatory T cells. In addition, we observed partial protection against re-challenge in a melanoma model and full protection in a breast cancer model. Conclusions Our findings suggest that V-aCD3Mu combined with an immune checkpoint inhibitor renders immunologically “cold” tumors “hot” and results in tumor elimination. Taken together, these data provide proof of concept for the further clinical development of V-aCD3 as a broad cancer therapy in combination with an immune checkpoint inhibitor

    Additional file 1 of Bispecific T cell-engager targeting oncofetal chondroitin sulfate induces complete tumor regression and protective immune memory in mice

    No full text
    Additional file 1: Sup. Fig. 1. (A) ELISA showing binding of V-aCD3Mu (Coupled)(Kd = 38.8, Bmax = 3.31), rVAR2 (Kd and Bmax not determined), and V-aCD3Mu (Fused)(Kd = 14.2, Bmax = 3.36) to CSPG on a decorin backbone. Data is representative of a minimum of two separate experiments. (B) Solid 4T1 tumors 50-100 mm3 in size were treated with either PBS (n=5), V-aCD3Mu (Coupled) + CpG (n=8), or V-aCD3Mu (Fused) + CpG (n=8) on day 10, 12, 14, and 17 after tumor injection. Numbers in parentheses indicate the number of animals with complete tumor regression out of all mice in the group. Sup. Fig. 2. (A) Gating strategy on splenocytes and PBMCs in flow cytometry used to determine binding of rVAR2, aCD3Mu, V-aCD3Mu, aCD3Hu, and anti-V5 antibodies to T cells and non-T cell splenocytes/PBMCs. The gating is single cells lymphocytes live cells CD4+ and/or CD8+ cells as T cells and CD4-CD8- cells as non-T cells. The geometric MFI of the anti-penta-HIS antibodies conjugated to Alexa Flour 488 was then used to evaluate the binding of the HIS-tagged proteins. (B) Binding of aCD3Mu (Kd = 4.96, Bmax = 1.05), rVAR2 (Kd = NR, Bmax = 0.46), and V-aCD3Mu (Kd = 1.24, Bmax = 3.38) to murine recombinant CD3 in ELISA with aCD4Mu as a negative control (left). Means and standard deviations are shown. Right pane shows CSA inhibition of binding at 120 nM (right). Each dot represents one data point. Sup. Fig. 3. Cytokines measured from 4T1 and splenocyte co-culture supernatants using ELISA. Mouse splenocytes were incubated with 4T1 cancer cells together with 200 nM of the indicated protein. Sup. Fig. 4. (A) Survival curves for mice with indicated tumors treated as described in Fig. 4. The cut-off for all Kaplan-Meier plots is a tumor volume of ≄\ge ≄ 400 mm3. Mice were censored if they had to be excluded from the study prematurely due to reasons other than tumor size. Log-rank test was used for statistical analysis. *p < 0.05. (B) Bioluminescence in vivo imaging of C57BL/6 mice following orthotopic implantation of 5x104 Luciferase+ primary pancreatic cancer cells (CHX2000) derived from KPC mice (LSL-KrasG12D/+; p53f/f; Pdx1-Cre). Sup. Fig. 5. (A-C) Survival curves for mice treated as described in Fig. 5. The cut-off for all Kaplan-Meier plots is a tumor volume of ≄\ge ≄ 400 mm3. Mice were censored if they had to be excluded from the study prematurely due to reasons other than tumor size. Log-rank test was used for statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Sup. Fig. 6. (A) Treatment schedule until day 14 when spleens and tumors were harvested for flow cytometry and the subsequent gating strategy on splenocytes to evaluate different cell types in C-D. (B) Percentage of live cells relative to the PBS group in the spleen. Both CD8+ and CD4+ T cells that are CD69+, CD44hi, CD8+CD25+, or Tregs are shown. (C) UMAPs of splenocytes from all four treatment groups with clustering performed in ClusterExplorer. Cell types in clusters are explained below. Statistics were performed using one-way ANOVA with Dunnett’s post hoc test for comparison of all treatment groups to the PBS group. P values are indicated if significant or important for reading the figure. (D) Correlations between the tumor size and ïżœ8+CD69+ (p=0.67) and ïżœ4+CD69+ (p=0.14) of all live single cells in the tumor evaluated by simple linear regression. Sup. Fig. 7. Binding of mouse antibodies to 4T1 cells and B16-F10 cells in flow cytometry. Serum from C57BL/6 mice treated as described in materials and methods was diluted as illustrated on the figure and incubated with 200.000 4T1 or B16-F10 cells. Soluble CSA was added if indicated for 1 hour before detection with an anti-mouse IgG antibody conjugated to FITC

    An Oncofetal Glycosaminoglycan Modification Provides Therapeutic Access to Cisplatin-resistant Bladder Cancer.

    No full text
    BACKGROUND Although cisplatin-based neoadjuvant chemotherapy (NAC) improves survival of unselected patients with muscle-invasive bladder cancer (MIBC), only a minority responds to therapy and chemoresistance remains a major challenge in this disease setting. OBJECTIVE To investigate the clinical significance of oncofetal chondroitin sulfate (ofCS) glycosaminoglycan chains in cisplatin-resistant MIBC and to evaluate these as targets for second-line therapy. DESIGN, SETTING, AND PARTICIPANTS An ofCS-binding recombinant VAR2CSA protein derived from the malaria parasite Plasmodium falciparum (rVAR2) was used as an in situ, in vitro, and in vivo ofCS-targeting reagent in cisplatin-resistant MIBC. The ofCS expression landscape was analyzed in two independent cohorts of matched pre- and post-NAC-treated MIBC patients. INTERVENTION An rVAR2 protein armed with cytotoxic hemiasterlin compounds (rVAR2 drug conjugate [VDC] 886) was evaluated as a novel therapeutic strategy in a xenograft model of cisplatin-resistant MIBC. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Antineoplastic effects of targeting ofCS. RESULTS AND LIMITATIONS In situ, ofCS was significantly overexpressed in residual tumors after NAC in two independent patient cohorts (p<0.02). Global gene-expression profiling and biochemical analysis of primary tumors and cell lines revealed syndican-1 and chondroitin sulfate proteoglycan 4 as ofCS-modified proteoglycans in MIBC. In vitro, ofCS was expressed on all MIBC cell lines tested, and VDC886 eliminated these cells in the low-nanomolar IC50 concentration range. In vivo, VDC886 effectively retarded growth of chemoresistant orthotopic bladder cancer xenografts and prolonged survival (p=0.005). The use of cisplatin only for the generation of chemoresistant xenografts are limitations of our animal model design. CONCLUSIONS Targeting ofCS provides a promising second-line treatment strategy in cisplatin-resistant MIBC. PATIENT SUMMARY Cisplatin-resistant bladder cancer overexpresses particular sugar chains compared with chemotherapy-naĂŻve bladder cancer. Using a recombinant protein from the malaria parasite Plasmodium falciparum, we can target these sugar chains, and our results showed a significant antitumor effect in cisplatin-resistant bladder cancer. This novel treatment paradigm provides therapeutic access to bladder cancers not responding to cisplatin

    An oncofetal glycosaminoglycan modification provides therapeutic access to cisplatin-resistant bladder cancer

    No full text
    Background: although cisplatin-based neoadjuvant chemotherapy (NAC) improves survival of unselected patients with muscle-invasive bladder cancer (MIBC), only a minority responds to therapy and chemoresistance remains a major challenge in this disease setting.Objective: o investigate the clinical significance of oncofetal chondroitin sulfate (ofCS) glycosaminoglycan chains in cisplatin-resistant MIBC and to evaluate these as targets for second-line therapy.Design, setting, and participants: an ofCS-binding recombinant VAR2CSA protein derived from the malaria parasite Plasmodium falciparum (rVAR2) was used as an in situ, in vitro, and in vivo ofCS-targeting reagent in cisplatin-resistant MIBC. The ofCS expression landscape was analyzed in two independent cohorts of matched pre- and post-NAC–treated MIBC patients.Intervention: an rVAR2 protein armed with cytotoxic hemiasterlin compounds (rVAR2 drug conjugate [VDC] 886) was evaluated as a novel therapeutic strategy in a xenograft model of cisplatin-resistant MIBC.Outcome measurements and statistical analysis: antineoplastic effects of targeting ofCS.Results and limitations: in situ, ofCS was significantly overexpressed in residual tumors after NAC in two independent patient cohorts (p &lt; 0.02). Global gene-expression profiling and biochemical analysis of primary tumors and cell lines revealed syndican-1 and chondroitin sulfate proteoglycan 4 as ofCS-modified proteoglycans in MIBC. In vitro, ofCS was expressed on all MIBC cell lines tested, and VDC886 eliminated these cells in the low-nanomolar IC50 concentration range. In vivo, VDC886 effectively retarded growth of chemoresistant orthotopic bladder cancer xenografts and prolonged survival (p = 0.005). The use of cisplatin only for the generation of chemoresistant xenografts are limitations of our animal model design.Conclusions: targeting ofCS provides a promising second-line treatment strategy in cisplatin-resistant MIBC.Patient summary: cisplatin-resistant bladder cancer overexpresses particular sugar chains compared with chemotherapy-naïve bladder cancer. Using a recombinant protein from the malaria parasite Plasmodium falciparum, we can target these sugar chains, and our results showed a significant antitumor effect in cisplatin-resistant bladder cancer. This novel treatment paradigm provides therapeutic access to bladder cancers not responding to cisplatin.</p
    corecore