464 research outputs found
A Review of Progress Towards Simulation of Arc Quenching in Lightning Protection Devices Based on Multi Chamber Systems
Two distinct modes of follow current suppression were observed in multi-chamber systems (MCS) under lightning overvoltage: Zero Quenching (ZQ) and Impulse Quenching (IQ). Sufficiently lower erosion of electrodes and evaporation of discharge chamber walls makes the IQ more preferable as a mechanism of arc quenching. Since experimental search for best MCS design is both difficult and expensive numerical modeling is considered as a prospective method for geometry optimization. Several steps were made towards development of efficient arc model. This article highlights most important results of arc quenching simulation and current status of arc model development
Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana
Peer reviewedPublisher PD
Characteristics of First-Order Vortex Lattice Melting: Jumps in Entropy and Magnetization
We derive expressions for the jumps in entropy and magnetization
characterizing the first-order melting transition of a flux line lattice. In
our analysis we account for the temperature dependence of the Landau parameters
and make use of the proper shape of the melting line as determined by the
relative importance of electromagnetic and Josephson interactions. The results
agree well with experiments on anisotropic YBaCuO and
layered BiSrCaCuO materials and reaffirm the validity of
the London model.Comment: 4 pages. We have restructured the paper to emphasize that in the
London scaling regime (appropriate for YBCO) our results are essentially
exact. We have also emphasized that a major controversy over the relevance of
the London model to describe VL melting has been settled by this wor
Flux melting in BSCCO: Incorporating both electromagnetic and Josephson couplings
Multilevel Monte Carlo simulations of a BSCCO system are carried out
including both Josephson as well as electromagnetic couplings for a range of
anisotropies. A first order melting transition of the flux lattice is seen on
increasing the temperature and/or the magnetic field. The phase diagram for
BSCCO is obtained for different values of the anisotropy parameter .
The best fit to the experimental results of D. Majer {\it et al.} [Phys. Rev.
Lett. {\bf 75}, 1166 (1995)] is obtained for provided one
assumes a temperature dependence of the
penetration depth with . Assuming a dependence
the best fit is obtained for . For finite anisotropy the data is shown to collapse on a straight line
when plotted in dimensionless units which shows that the melting transition can
be satisfied with a single Lindemann parameter whose value is about 0.3. A
different scaling applies to the case. The energy jump is
measured across the transition and for large values of it is found to
increase with increasing anisotropy and to decrease with increasing magnetic
field. For infinite anisotropy we see a 2D behavior of flux droplets with a
transition taking place at a temperature independent of the magnetic field. We
also show that for smaller values of anisotropy it is reasonable to replace the
electromagnetic coupling with an in-plane interaction represented by a Bessel
function of the second kind (), thus justifying our claim in a previous
paper.Comment: 12 figures, revtex
Universal properties for linelike melting of the vortex lattice
Using numerical results obtained within two models describing vortex matter
(interacting elastic lines (Bose model) and uniformly frustrated XY-model) we
establish universal properties of the melting transition within the linelike
regime. These properties, which are captured correctly by both models, include
the scaling of the melting temperature with anisotropy and magnetic field, the
effective line tension of vortices in the liquid regime, the latent heat, the
entropy jump per entanglement length, and relative jump of Josephson energy at
the transition as compared to the latent heat. The universal properties can
serve as experimental fingerprints of the linelike regime of melting.
Comparison of the models allows us to establish boundaries of the linelike
regime in temperature and magnetic field.Comment: Revtex, 12 pages, 2 EPS figure
Abrikosov vortex escape from a columnar defect as a topological electronic transition in vortex core
We study microscopic scenario of vortex escape from a columnar defect under
the influence of a transport current. For defect radii smaller than the
superconducting coherence length the depinning process is shown to be a
consequence of two subsequent topological electronic transitions in a trapped
vortex core. The first transition at a critical current is associated
with the opening of Fermi surface segments corresponding to the creation of a
vortex--antivortex pair bound to the defect. The second transition at a certain
current is caused by merging of different Fermi surface segments,
which accompanies the formation of a freely moving vortex.Comment: 5 pages, 4 figure
Flux-line entanglement as the mechanism of melting transition in high-temperature superconductors in a magnetic field
The mechanism of the flux-line-lattice (FLL) melting in anisotropic high-T_c
superconductors in is clarified by Monte Carlo
simulations of the 3D frustrated XY model. The percentage of entangled flux
lines abruptly changes at the melting temperature T_m, while no sharp change
can be found in the number and size distribution of vortex loops around T_m.
Therefore, the origin of this melting transition is the entanglement of flux
lines. Scaling behaviors of physical quantities are consistent with the above
mechanism of the FLL melting. The Lindemann number is also evaluated without
any phenomenological arguments.Comment: 10 pages, 5 Postscript figures, RevTeX; changed content and figures,
Phys. Rev. B Rapid Commun. in pres
Low-Field Phase Diagram of Layered Superconductors: The Role of Electromagnetic Coupling
We determine the position and shape of the melting line in a layered
superconductor taking the electromagnetic coupling between layers into account.
In the limit of vanishing Josephson coupling we obtain a new generic reentrant
low-field melting line. Finite Josephson coupling pushes the melting line to
higher temperatures and fields and a new line shape is found. We construct the low-field phase diagram including
melting and decoupling lines and discuss various experiments in the light of
our new results.Comment: 12 pages, 1 figure attached as compressed and uuencoded postscrip
Monte-Carlo calculation of longitudinal and transverse resistivities in a model Type-II superconductor
We study the effect of a transport current on the vortex-line lattice in
isotropic type-II superconductors in the presence of strong thermal
fluctuations by means of 'driven-diffusion' Monte Carlo simulations of a
discretized London theory with finite magnetic penetration depth. We calculate
the current-voltage (I-V) characteristics for various temperatures, for
transverse as well as longitudinal currents I. From these characteristics, we
estimate the linear resistivities R_xx=R_yy and R_zz and compare these with
equilibrium results for the vortex-lattice structure factor and the helicity
moduli. From this comparison a consistent picture arises, in which the melting
of the flux-line lattice occurs in two stages for the system size considered.
In the first stage of the melting, at a temperature T_m, the structure factor
drops to zero and R_xx becomes finite. For a higher temperature T_z, the second
stage takes place, in which the longitudinal superconducting coherence is lost,
and R_zz becomes finite as well. We compare our results with related recent
numerical work and experiments on cuprate superconductors.Comment: 4 pages, with eps figure
- …