80 research outputs found

    Critical dynamics of an interacting magnetic nanoparticle system

    Full text link
    Effects of dipole-dipole interactions on the magnetic relaxation have been investigated for three Fe-C nanoparticle samples with volume concentrations of 0.06, 5 and 17 vol%. While both the 5 and 17 vol% samples exhibit collective behavior due to dipolar interactions, only the 17 vol% sample displays critical behavior close to its transition temperature. The behaviour of the 5 vol% sample can be attributed to a mixture of collective and single particle dynamics.Comment: 19 pages, 8 figure

    Relaxation of the field-cooled magnetization of an Ising spin glass

    Full text link
    The time and temperature dependence of the field-cooled magnetization of a three dimensional Ising spin glass, Fe_{0.5}Mn_{0.5}TiO_{3}, has been investigated. The temperature and cooling rate dependence is found to exhibit memory phenomena that can be related to the memory behavior of the low frequency ac-susceptibility. The results add some further understanding on how to model the three dimensional Ising spin glass in real space.Comment: 8 pages RevTEX, 5 figure

    Non-equilibrium dynamics in an interacting nanoparticle system

    Get PDF
    Non-equilibrium dynamics in an interacting Fe-C nanoparticle sample, exhibiting a low temperature spin glass like phase, has been studied by low frequency ac-susceptibility and magnetic relaxation experiments. The non-equilibrium behavior shows characteristic spin glass features, but some qualitative differences exist. The nature of these differences is discussed.Comment: 7 pages, 11 figure

    Fragility of the spin-glass-like collective state to a magnetic field in an interacting Fe-C nanoparticle system

    Get PDF
    The effect of applied magnetic fields on the collective nonequilibrium dynamics of a strongly interacting Fe-C nanoparticle system has been investigated. It is experimentally shown that the magnetic aging diminishes to finally disappear for fields of moderate strength. The field needed to remove the observable aging behavior increases with decreasing temperature. The same qualitative behavior is observed in an amorphous metallic spin glass (Fe_{0.15}Ni_{0.85})_{75}P_{16}B_6Al_3.Comment: 5 pages, 3 figure

    Spin Glasses: Model systems for non-equilibrium dynamics

    Full text link
    Spin glasses are frustrated magnetic systems due to a random distribution of ferro- and antiferromagnetic interactions. An experimental three dimensional (3d) spin glass exhibits a second order phase transition to a low temperature spin glass phase regardless of the spin dimensionality. In addition, the low temperature phase of Ising and Heisenberg spin glasses exhibits similar non-equilibrium dynamics and an infinitely slow approach towards a thermodynamic equilibrium state. There are however significant differences in the detailed character of the dynamics as to memory and rejuvenation phenomena and the influence of critical dynamics on the behaviour. In this article, some aspects of the non-equilibrium dynamics of an Ising and a Heisenberg spin glass are briefly reviewed and some comparisons are made to other glassy systems that exhibit magnetic non-equilibrium dynamics.Comment: To appear in J. Phys.: Condens. Matter, Proceedings from HFM2003, Grenobl

    Absence of aging in the remanent magnetization in Migdal-Kadanoff spin glasses

    Full text link
    We study the non-equilibrium behavior of three-dimensional spin glasses in the Migdal-Kadanoff approximation, that is on a hierarchical lattice. In this approximation the model has an unique ground state and equilibrium properties correctly described by the droplet model. Extensive numerical simulations show that this model lacks aging in the remanent magnetization as well as a maximum in the magnetic viscosity in disagreement with experiments as well as with numerical studies of the Edwards-Anderson model. This result strongly limits the validity of the droplet model (at least in its simplest form) as a good model for real spin glasses.Comment: 4 pages and 3 figures. References update

    Surfing on a critical line: Rejuvenation without chaos, Memory without a hierarchical phase space

    Full text link
    The dynamic behaviour of glassy materials displays strong nonequilibrium effects, such as ageing in simple protocols, memory, rejuvenation and Kovacs effects in more elaborated experiments. We show that this phenomenology may be easily understood in the context of the nonequilibrium critical dynamics of non-disordered systems, the main ingredient being the existence of an infinite equilibrium correlation length. As an example, we analytically investigate the behaviour of the 2D XY model submitted to temperature protocols similar to experiments. This shows that typical glassy effects may be obtained by `surfing on a critical line' without invoking the concept of temperature chaos nor the existence of a hierarchical phase space, as opposed to previous theoretical approaches. The relevance of this phenomenological approach to glassy dynamics is finally discussed.Comment: Version to be published in Europhysics Letters. Slight modifs + ref to "surfing" adde

    From Linear to Nonlinear Response in Spin Glasses: Importance of Mean-Field-Theory Predictions

    Full text link
    Deviations from spin-glass linear response in a single crystal Cu:Mn 1.5 at % are studied for a wide range of changes in magnetic field, ΔH\Delta H. Three quantities, the difference TRM−(MFC−ZFC)TRM-(MFC-ZFC), the effective waiting time, twefft_{w}^{eff}, and the difference TRM(tw)−TRM(tw=0)TRM(t_{w})-TRM(t_{w}=0) are examined in our analysis. Three regimes of spin-glass behavior are observed as ΔH\Delta H increases. Lines in the (T,ΔH)(T,\Delta H) plane, corresponding to ``weak'' and ``strong'' violations of linear response under a change in magnetic field, are shown to have the same functional form as the de Almeida-Thouless critical line. Our results demonstrate the existence of a fundamental link between static and dynamic properties of spin glasses, predicted by the mean-field theory of aging phenomena.Comment: 9 pages, 10 figure

    Measuring equilibrium properties in aging systems

    Full text link
    We corroborate the idea of a close connection between replica symmetry breaking and aging in the linear response function for a large class of finite-dimensional systems with short-range interactions. In these system, characterized by a continuity condition with respect to weak random perturbations of the Hamiltonian, the ``fluctuation dissipation ratio'' in off-equilibrium dynamics should be equal to the static cumulative distribution function of the overlaps. This allows for an experimental measurement of the equilibrium order parameter function.Comment: 5 pages, LaTeX. The paper has been completely rewritten and shortene
    • …
    corecore