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The effect of applied magnetic fields on the collective nonequilibrium dynamics of a strongly interacting
Fe-C nanoparticle system has been investigated. It is experimentally shown that the magnetic aging diminishes
to finally disappear for fields of moderate strength. The field needed to remove the observable aging behavior
increases with decreasing temperature. The same qualitative behavior is observed in an amorphous metallic
spin glass (Fe0.15Ni0.85)75P16B6Al3.
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Frozen ferrofluids offer systems where the long-range di-
polar interaction between the single-domain nanoparticles
can be continuously varied by changing the particle concen-
tration. In a dilute ferrofluid, where the dipolar interaction
energy is negligible compared to the anisotropy energy, the
magnetic properties of the system are given by averaging
over the individual particle contributions. The dynamical
properties of isolated particles are determined by the ther-
mally activated relaxation between the potential wells of the
anisotropy energy, as was originally proposed by Ne´el.1 The
magnetic response of a single-domain particle is strongly
affected by an external bias field. The relaxation time de-
pends both on the magnitude and the direction of the applied
magnetic field with respect to the anisotropy axis, in combi-
nation with the damping of the gyration around the easy axis
after a spin flip~see, e.g., Refs. 2–5!. For interacting particle
systems, the dipolar field created by surrounding particles
will also affect the relaxation.6,7

Highly concentrated ferrofluids, in which the dipolar in-
teraction energy dominates over the anisotropy energy, con-
tain all ingredients needed to create collective glassy dynam-
ics; a complex interaction mechanism—the dipolar
interaction—and frustration provided by the randomness of
the particle positions and directions of the anisotropy axes.
Indeed, experiments have shown that such particle systems
exhibit nonequilibrium dynamics with striking similarities to
the nonequilibrium dynamics of spin glasses. The magnetic
relaxation of the low field dc magnetization shows an aging
behavior8 and there is a downward relaxation of the low-
frequency ac susceptibility when the sample is kept at con-
stant temperature combined with a rejuvenation and memory
behavior when the temperature of the sample is further de-
creased and subsequently reheated.9,10Also, certain effects of
applied magnetic fields on the nonequilibrium behavior of
particle systems have been reported. In a recent work it was
shown that the relaxation of the thermoremanent magnetiza-
tion exhibits magnetic aging if the field applied during cool-
ing is low, but not if a relatively high field is used.11 This
result is similar to the behavior of spin glasses where large-
enough fields impose an equilibrium state on experimental
time scales and a relaxation of the thermoremanent magne-

tization that is independent of wait time12 and it is thus also
consistent with the assumption of collective spin-glass-like
dynamics in strongly interacting nanoparticle systems.13 In
the spin-glass case, it has also been shown that field changes
can induce rejuvenation of the spin-glass state,14 and that the
nonequilibrium relaxation is affected by large-enough
fields.15,16

In this paper, we study the effect of bias-magnetic fields
on the nonequilibrium dynamics of a strongly interacting
nanoparticle sample. We have chosen to measure the relax-
ation of the low-frequency ac susceptibility, since such relax-
ation is indicative of magnetic aging and, therefore, does not
exist in weakly interacting nanoparticle systems. It is ob-
served that the collective nonequilibrium dynamics disap-
pears at moderate fields and that the strength of the field
needed to remove the collective glassy dynamics increases
with decreasing temperature. The same qualitative behavior
is observed for a spin-glass sample. We interpret the results
within the droplet model,17 which is a real-space model that
has successfully been used to describe nonequilibrium ef-
fects in spin glasses.

The ferrofluid consisted of ferromagnetic nanoparticles of
the amorphous alloy Fe12xCx (x'0.2–0.3). A TEM study
revealed a nearly spherical particle shape and a particle size
of d55.360.3 nm. The saturation magnetization is esti-
mated toMs513103 G and the anisotropy constant toK
593105 erg cm23. Details about the sample preparation
and characterization are given elsewhere.18 Two samples
were studied, one with a concentration of 5 vol% that has
earlier been shown to exhibit spin-glass-like nonequilibrium
dynamics,10 while the second sample was diluted to 1 vol%
and no magnetic aging was observed in this sample.

For comparison, experiments were also performed on an
amorphous metallic spin glass (Fe0.15Ni0.85)75P16B6Al3. The
interaction in this sample is of Ruderman-Kittel-Kasuya-
Yosida type and it behaves as a dilute metallic spin-glass
alloy with a transition temperature ofTg522.5 K. Various
magnetic properties of the system have been investigated in a
number of earlier reports~see, e.g., Refs. 19, 20, 14, and 15!.
We chose this compound since it has a high susceptibility,
and comparably low applied magnetic fields are needed to
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affect the nonequilibrium dynamics.
The temperature dependence of the ac susceptibility of the

two nanoparticle samples with a superimposed dc field was
measured in a LakeShore 7225 ac susceptometer using an ac
probing field of frequency 125 Hz and amplitude 2 Oe and
dc fields in the range 0–250 Oe. These fields are low enough
not to destroy the two-well structure of the single-particle
potential.21 A noncommercial low-field superconducting
quantum interference device magnetometer22 was used to
measure the ac susceptibility with superimposed dc fields as
a function of time on both the 5 vol% nanoparticle sample
and the spin glass. The samples were cooled in the dc field
from a temperature in the paramagnetic region to the mea-
suring temperature, and the data collection was initiated after
waiting a short timet0 allowing the system to stabilize. For
the nanoparticle samplet05120 s and for the spin glasst0
560 s. The frequency of the ac field was 510 mHz, the field
amplitude 10 mOe and the range of dc fields 0–240 Oe.

The total energy of a nanoparticle system, probed by an ac
field of amplitudeh0 and with an applied dc fieldH in the
same direction as the ac field, is given by

E5Ea2(
i

mW i•~h0ẑ sinvt1Hẑ1HW i
dip!, ~1!

whereEa is the anisotropy energy andmW i is the magnetic
moment of particlei. The dipolar field at the position of the
i th particle is given by

HW i
dip5 (

j
F3~mW j•rW i j !rW i j

r i j
5

2
mW j

r i j
3 G , ~2!

where j Þ i andrW i j 5rW i2rW j is the vector connecting particlei
with particle j.

The results from measurements of the ac susceptibility
with superimposed dc fields for the two nanoparticle samples
are shown in Fig. 1. ForH50 the peak of the ac suscepti-
bility appears at higher temperature for the 5 vol% sample
than for the 1 vol% sample, due to the stronger dipolar in-
teractions in the more concentrated sample. However, the
difference between the susceptibility of the two samples de-
creases with increasing dc field, and for the highest fields the
susceptibility curves are almost identical indicating that the
dipolar field created by the surrounding particles is negli-
gible compared to the applied field. Corresponding ac-
susceptibility results with bias fields for the spin-glass
sample are shown in Fig. 1 of Ref. 20.

We have chosen to study how the collective behavior is
affected by a magnetic field by measuring the relaxation of
the low-frequency ac susceptibility in superimposed dc
fields. Aging effects are seen inx9(v) as a relaxation to-
wards equilibrium with time spent at constant temperature,t
(@1/v).23 The corresponding relaxation is seen inx8(v),
and since the relaxation is larger inx8 than inx9 it can be
more convenient to studyx8 if the relaxation is small.10 Fig-
ure 2 showsx(H,t)2x(H,t5t0) for different dc fields at
T525 K for the 5 vol% sample. It is seen that the field
reduces the relaxation and at fields higher than 200 Oe there
is almost no relaxation left. A reduction of the relaxation in

the ac susceptibility with applied magnetic fields is also ob-
served for the spin-glass sample.

We now define a quantityk as

k~H !5
x~H,t5t0!2x~H,t5tmax!

x~H50,t5t0!2x~H50,t5tmax!
, ~3!

which gives a relative measure of the relaxation in the pres-
ence of a dc field. We have repeated the measurements in
Fig. 2 at different temperatures for both the 5 vol% sample

FIG. 1. Ac susceptibility vs temperature for different superim-
posed dc fields;H50, 50, 100, 150, 200, 250 Oe.f 5125 Hz.

FIG. 2. Relaxation of the ac susceptibility for different superim-
posed dc fieldsH, measured on the 5-vol% nanoparticle sample.
The frequencyv/2p5510 mHz and the temperatureT525 K.
Same units as in Fig. 1.
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and the spin-glass sample. For both samples the relaxation
persists to higher fields at lower temperatures. Postulating an
HTx dependence ofk and usingx as a fitting parameter, we
obtain reasonable scaling behavior for the two samples. In
Fig. 3~a! k(HT2.5) is shown for temperatures in the interval
20–35 K, for the 5-vol% nanoparticle sample. The curves
measured at different temperatures give a satisfactory data
collapse. For the spin-glass sample, on the other hand, data
collapse is obtained for curves measured at different tem-
peratures between 16 and 20 K usingk(HT7.5), as can be
seen in Fig. 3~b!. The choice of usingx8 or x9 in the analy-
sis did not affectk.

We will interpret our results within the droplet model17

that was derived for short-range Ising spin glasses. Important
concepts of the model should, however, also be applicable to
particle systems exhibiting strong dipole-dipole interaction
and random orientation of the anisotropy axes.10 In this
model, it is assumed that, at each temperature below the
spin-glass transition temperatureTg , the spin-glass equilib-
rium state is unique but twofold degenerate by its global
spin-reversal state. In equilibrium, the most important con-
tribution to physical observables, such as the magnetic sus-
ceptibility, comes from low-lying excitations of compact
clusters of spins, calleddroplets. The droplet excitations of
sizeL have a broad distribution of free energies, with a typi-
cal value of

FL
typ;Y~L/L0!u,

whereY(T) is the stiffness modulus,u is the stiffness expo-
nent, andL0 is a characteristic length scale. The stiffness
exponent satisfiesu<(d21)/2, whered is the dimension of
the system, andu'0.2 for d53.24,25The dynamics of drop-
lets is a thermally activated process. The typical energy bar-
rier scales as

BL
typ;D~T!@L/L0#c,

whereD(T) sets the free-energy scale of the barriers and the
barrier exponentc satisfiesu<c<d21. The value of the
exponentc has been estimated to be 0.8.26

Let us now consider the isothermal aging process that we
have observed experimentally as a relaxation of the low-
frequency ac susceptibility. Within the droplet model, the
development towards equilibrium from the out-of-
equilibrium state, which was created when quenching the
system, is governed by the growth of domains belonging to
either of the two degenerate equilibrium states. This growth
is driven by successive nucleation and annihilation of drop-
lets. The growth law proposed by Fisher and Huse17 is

LT~ t !;L0FT ln~ t/t0!

D~T! G1/c

, ~4!

wheret0 is the relaxation time of a spin~or magnetic mo-
ment!. The weak ac field of frequencyv/2p probes the sys-
tem by polarizing droplets of sizeLT(1/v). Since t@1/v,
LT(1/v),LT(t) and hence the domain walls of sizeLT(t)
appear effectively frozen on the probing length scale. The
small-scale droplets@of size LT(1/v)# in touch with a
frozen-in domain wall will have a lower free energy than
they would have had if the frozen-in wall was not present.
This can be described by a reduction of the effective stiffness
of the system. Fisher and Huse used scaling arguments to
obtain

DY

Y
;FLT~1/v!

LT~ t ! Gd2u

and deduced that

x9~v!5xeq9 ~v!H 12cFLT~1/v!

LT~ t ! Gd2uJ , ~5!

wherec is a constant. It has been shown experimentally, for
a two-dimensional Ising spin glass, that bothx9 andx8 relax
according to this expression.27

In a magnetic fieldH, the system is disordered by the field
on length scales larger than the correlation length

jH;F Y

HAqm
G 2/(d22u)

,

while it still exhibits spin-glass order on shorter length
scales. Here,qm(T) is an order parameter defined in Ref. 17.
The typical time needed for the system to equilibrate is given
by teq;tH , where ln(tH /t0);(D/T)jH

c . The relaxation ofx
at a certain temperature will then be governed by the relation
between the domain sizeLT(t) reached within the experi-
mental time window and the length scalejH set by the mag-
netic field. In a strong applied field, Eq.~5! can be modified
to include the correlation length as

x9~v,H !5xeq9 ~v,H !H 12cF LT~1/v!

min„LT~ t !,jH…
Gd2uJ . ~6!

Here, it should be noted that neitherLT(t) nor jH are well
defined length scales, so the relaxation will not end abruptly,
but will gradually be suppressed over a wide time window.
Three different field regimes can be distinguished:~i! LT(t)
!jH , the collective nonequilibrium dynamics is virtually
unaffected by the field;~ii ! LT(t)&jH , the system is partly

FIG. 3. Quantityk(HTx) at different temperatures for~a! the
5-vol% nanoparticle sample usingx52.5 and ~b! the spin glass
usingx57.5.
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at equilibrium, and hence the ac relaxation is reduced; and
~iii ! LT(t).jH , the system is in equilibrium, no collective
dynamics exists.

At sufficiently low temperatures (T/Tg&0.5) the influ-
ence of critical fluctuations is small and hence the
temperature-dependent coefficientsY, D, and qm are ap-
proximately constant, while they vanish atTg .17 Sincek(H)
scales withLT(t)/jH according to Eq.~6!, we then expect to
obtain data collapse, at low temperatures, plottingk vs HTx̃,
with x̃5(d22u)/2c. The reported values ofu andc yield
x̃'1.6 and hence the conditionLT(t)/jH'1 is fulfilled for
lower fields at higher temperatures in accordance with results
shown in Fig. 3.

For the spin-glass samplex57.5 was obtained@see Fig.
3~b!#. Due to experimental limitations, these measurements
correspond toT/Tg;0.7–0.9 and it is expected thatxÞ x̃
since close to the transition critical fluctuations will modify
the temperature dependence. The larger value ofx than of x̃
indicates that the temperature dependence of the field needed
to affect the collective dynamics is stronger close toTg than
at lower temperatures. This is consistent with how a bias
field affects the ac susceptibility vs temperature curve~see
Fig. 1, Ref. 20!—the ac susceptibility is the most affected by
bias fields close toTg .

For the nanoparticle sample,x52.5 was obtained@see
Fig. 3~a!#. This apparent better agreement with the estimated
value of x̃ does not mean that the particle system is better
described by the droplet model than the studied isotropic
spin glass. For the nanoparticle sample one may, e.g., expect
some further discrepancy due to the relaxation time of an
individual magnetic moment. Unlike the spin-flip time of an
atomic moment in a spin glass that is constant, the relaxation
time of a magnetic moment depends both on the temperature
and the field in a nontrivial way, and is also affected by the
dipolar interactions.

We have shown, by measuring the isothermal relaxation
of the ac susceptibility with superimposed dc fields, that the
collective glassy dynamics of a strongly interacting nanopar-
ticle system can be destroyed by the application of moderate
fields. The field strength needed to destroy the collective
dynamics increases with decreasing temperature. This behav-
ior is consistent with corresponding observations on a spin-
glass sample. The results for both samples show qualitative
agreement with predictions within the droplet model.
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