264 research outputs found

    Dynamics of diluted magnetic semiconductors from atomistic spin dynamics simulations: Mn doped GaAs as a case study

    Full text link
    The dynamical behavior of the magnetism of diluted magnetic semiconductors (DMS) has been investigated by means of atomistic spin dynamics simulations. The conclusions drawn from the study are argued to be general for DMS systems in the low concentration limit, although all simulations are done for 5% Mn-doped GaAs with various concentrations of As antisite defects. The magnetization curve, M(T)M(T), and the Curie temperature TCT_C have been calculated, and are found to be in good correspondence to results from Monte Carlo simulations and experiments. Furthermore, equilibrium and non-equilibrium behavior of the magnetic pair correlation function have been extracted. The dynamics of DMS systems reveals a substantial short ranged magnetic order even at temperatures at or above the ordering temperature, with a non-vanishing pair correlation function extending up to several atomic shells. For the high As antisite concentrations the simulations show a short ranged anti-ferromagnetic coupling, and a weakened long ranged ferromagnetic coupling. For sufficiently large concentrations we do not observe any long ranged ferromagnetic correlation. A typical dynamical response shows that starting from a random orientation of moments, the spin-correlation develops very fast (∼\sim 1ps) extending up to 15 atomic shells. Above ∼\sim 10 ps in the simulations, the pair correlation is observed to extend over some 40 atomic shells. The autocorrelation function has been calculated and compared with ferromagnets like bcc Fe and spin-glass materials. We find no evidence in our simulations for a spin-glass behaviour, for any concentration of As antisites. Instead the magnetic response is better described as slow dynamics, at least when compared to that of a regular ferromagnet like bcc Fe.Comment: 24 pages, 15 figure

    Relaxation of the field-cooled magnetization of an Ising spin glass

    Full text link
    The time and temperature dependence of the field-cooled magnetization of a three dimensional Ising spin glass, Fe_{0.5}Mn_{0.5}TiO_{3}, has been investigated. The temperature and cooling rate dependence is found to exhibit memory phenomena that can be related to the memory behavior of the low frequency ac-susceptibility. The results add some further understanding on how to model the three dimensional Ising spin glass in real space.Comment: 8 pages RevTEX, 5 figure

    Interaction effects and transport properties of Pt capped Co nanoparticles

    Get PDF
    We studied the magnetic and transport properties of Co nanoparticles (NPs) being capped with varying amounts of Pt. Beside field and temperature dependent magnetization measurements we performed delta-M measurements to study the magnetic interactions between the Co NPs. We observe a transition from demagnetizing towards magnetizing interactions between the particles for an increasing amount of Pt capping. Resistivity measurements show a crossover from giant magnetoresistance towards anisotropic magnetoresistance

    Phase transition in a super superspin glass

    Full text link
    We here confirm the occurrence of spin glass phase transition and extract estimates of associated critical exponents of a highly monodisperse and densely compacted system of bare maghemite nanoparticles. This system has earlier been found to behave like an archetypal spin glass, with e.g. a sharp transition from paramagnetic to non-equilibrium behavior, suggesting that this system undergoes a spin-glass phase transition at a relatively high temperature, TgT_g ∼\sim 140 K.Comment: 4 pages, 3 figure

    The Memory Effect in Electron Glasses

    Full text link
    We present a theory for the memory effect in electron glasses. In fast gate voltage sweeps it is manifested as a dip in the conductivity around the equilibration gate voltage. We show that this feature, also known as anomalous field effect, arises from the long-time persistence of correlations in the electronic configuration. We argue that the gate voltage at which the memory dip saturates is related to an instability caused by the injection of a critical number of excess carriers. This saturation threshold naturally increases with temperature. On the other hand, we argue that the gate voltage beyond which memory is erased, is temperature independent. Using standard percolation arguments, we calculate the anomalous field effect as a function of gate voltage, temperature, carrier density and disorder. Our results are consistent with experiments, and in particular, they reproduce the observed scaling of the width of the memory dip with various parameters.Comment: Accepted version, to be published in PR
    • …
    corecore