22 research outputs found

    Energetic Analysis of Landing: A Novel Approach to Understanding Anterior Cruciate Ligament Injuries

    Get PDF
    Energetic analysis of landing combines kinematic and kinetic parameters across the landing period that have traditionally been evaluated independently and at discrete time points. This coupling of the kinematics and kinetics of multiple joints provides a more comprehensive description of the complex multi-segmental mechanics that occur during landing and in proposed anterior cruciate ligament (ACL) injury mechanisms. The purpose of this investigation was to utilize this form of analysis to 1) elucidate new knowledge regarding biomechanical factors that contribute to sagittal plane energy absorption (EA) patterns that are associated with high risk landing biomechanics related to ACL injury; 2) explore relationships between frontal and sagittal plane EA, and ACL-related landing biomechanics; and 3) clarify previous research regarding potential sex differences in lower extremity EA strategies. 82 volunteer subjects (41 males, 41 females; age = 20.1 ± 2.4 years; height = 1.74 ± 0.10 m; mass = 70.3 ± 16.1 kg) were included in this research study. Subjects had peak isometric strength measured prior to completing double leg jump landing and drop landing tasks during which biomechanics and were assessed. It was found that greater sagittal and frontal plane EA during the 100 ms after ground contact were indicative of biomechanical profiles that likely result in greater ACL loading due to sagittal and frontal plane mechanisms, respectively. However, there is no association between the magnitudes of sagittal and frontal plane EA during landing. Additionally, no sex differences in EA strategy were identified after controlling for initial joint kinematics indicating that landing posture, not sex, influences EA strategy. Finally, the combination of multi-factorial biomechanical parameters is predictive of EA at the hip and ankle, but not at the knee and suggests that interventions aimed at reducing total lower extremity EA and thereby potentially decreasing knee joint loading during landing must facilitate changes across the entire kinetic chain. The results of this investigation provide significant information for understanding the way in which multi-joint lower extremity movement patterns during landing, quantified using EA analyses, affects ACL loading, and provides much-needed evidence for specific biomechanical factors that should be targeted in ACL injury prevention programs

    Athletic Training and Public Health Summit

    Get PDF
    To introduce athletic trainers to the benefits of using a population-based approach to injury and illness prevention and to explore opportunities for partnering with public health professionals on these initiatives

    Hamstrings Stiffness and Landing Biomechanics Linked to Anterior Cruciate Ligament Loading

    Get PDF
    Greater hamstrings stiffness is associated with less anterior tibial translation during controlled perturbations. However, it is unclear how hamstrings stiffness influences anterior cruciate ligament (ACL) loading mechanisms during dynamic tasks

    Ankle-Dorsiflexion Range of Motion and Landing Biomechanics

    Get PDF
    A smaller amount of ankle-dorsiflexion displacement during landing is associated with less knee-flexion displacement and greater ground reaction forces, and greater ground reaction forces are associated with greater knee-valgus displacement. Additionally, restricted dorsiflexion range of motion (ROM) is associated with greater knee-valgus displacement during landing and squatting tasks. Because large ground reaction forces and valgus displacement and limited knee-flexion displacement during landing are anterior cruciate ligament (ACL) injury risk factors, dorsiflexion ROM restrictions may be associated with a greater risk of ACL injury. However, it is unclear whether clinical measures of dorsiflexion ROM are associated with landing biomechanics

    Lower Extremity Energy Absorption and Biomechanics During Landing, Part II: Frontal-Plane Energy Analyses and Interplanar Relationships

    Get PDF
    Greater sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing is consistent with sagittal-plane biomechanics that likely increase anterior cruciate ligament (ACL) loading, but it does not appear to influence frontal-plane biomechanics. We do not know whether frontal-plane INI EA is related to high-risk frontal-plane biomechanics

    Lower Extremity Energy Absorption and Biomechanics During Landing, Part I: Sagittal-Plane Energy Absorption Analyses

    Get PDF
    Eccentric muscle actions of the lower extremity absorb kinetic energy during landing. Greater total sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing has been associated with landing biomechanics considered high risk for anterior cruciate ligament (ACL) injury. We do not know whether groups with different INI EA magnitudes exhibit meaningful differences in ACL-related landing biomechanics and whether INI EA might be useful to identify ACL injury-risk potential
    corecore