32 research outputs found

    Effect of the explicit flexibility of the InhA enzyme from Mycobacterium tuberculosis in molecular docking simulations

    Get PDF
    Background: Protein/receptor explicit flexibility has recently become an important feature of molecular docking simulations. Taking the flexibility into account brings the docking simulation closer to the receptors’ real behaviour in its natural environment. Several approaches have been developed to address this problem. Among them, modelling the full flexibility as an ensemble of snapshots derived from a molecular dynamics simulation (MD) of the receptor has proved very promising. Despite its potential, however, only a few studies have employed this method to probe its effect in molecular docking simulations. We hereby use ensembles of snapshots obtained from three different MD simulations of the InhA enzyme from M. tuberculosis (Mtb), the wild-type (InhA_wt), InhA_I16T, and InhA_I21V mutants to model their explicit flexibility, and to systematically explore their effect in docking simulations with three different InhA inhibitors, namely, ethionamide (ETH), triclosan (TCL), and pentacyano (isoniazid)ferrate(II) (PIF). Results: The use of fully-flexible receptor (FFR) models of InhA_wt, InhA_I16T, and InhA_I21V mutants in docking simulation with the inhibitors ETH, TCL, and PIF revealed significant differences in the way they interact as compared to the rigid, InhA crystal structure (PDB ID: 1ENY). In the latter, only up to five receptor residues interact with the three different ligands. Conversely, in the FFR models this number grows up to an astonishing 80 different residues. The comparison between the rigid crystal structure and the FFR models showed that the inclusion of explicit flexibility, despite the limitations of the FFR models employed in this study, accounts in a substantial manner to the induced fit expected when a protein/receptor and ligand approach each other to interact in the most favourable manner. Conclusions: Protein/receptor explicit flexibility, or FFR models, represented as an ensemble of MD simulation snapshots, can lead to a more realistic representation of the induced fit effect expected in the encounter and proper docking of receptors to ligands. The FFR models of InhA explicitly characterizes the overall movements of the amino acid residues in helices, strands, loops, and turns, allowing the ligand to properly accommodate itself in the receptor’s binding site. Utilization of the intrinsic flexibility of Mtb’s InhA enzyme and its mutants in virtual screening via molecular docking simulation may provide a novel platform to guide the rational or dynamicalstructure-based drug design of novel inhibitors for Mtb’s InhA. We have produced a short video sequence of each ligand (ETH, TCL and PIF) docked to the FFR models of InhA_wt. These videos are available at http://www.inf.pucrs. br/~osmarns/LABIO/Videos_Cohen_et_al_19_07_2011.htm

    FReDoWS: a method to automate molecular docking simulations with explicit receptor flexibility and snapshots selection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>In silico</it> molecular docking is an essential step in modern drug discovery when driven by a well defined macromolecular target. Hence, the process is called structure-based or rational drug design (RDD). In the docking step of RDD the macromolecule or receptor is usually considered a rigid body. However, we know from biology that macromolecules such as enzymes and membrane receptors are inherently flexible. Accounting for this flexibility in molecular docking experiments is not trivial. One possibility, which we call a fully-flexible receptor model, is to use a molecular dynamics simulation trajectory of the receptor to simulate its explicit flexibility. To benefit from this concept, which has been known since 2000, it is essential to develop and improve new tools that enable molecular docking simulations of fully-flexible receptor models.</p> <p>Results</p> <p>We have developed a Flexible-Receptor Docking Workflow System (FReDoWS) to automate molecular docking simulations using a fully-flexible receptor model. In addition, it includes a snapshot selection feature to facilitate acceleration the virtual screening of ligands for well defined disease targets. FReDoWS usefulness is demonstrated by investigating the docking of four different ligands to flexible models of <it>Mycobacterium tuberculosis’</it> wild type InhA enzyme and mutants I21V and I16T. We find that all four ligands bind effectively to this receptor as expected from the literature on similar, but wet experiments.</p> <p>Conclusions</p> <p>A work that would usually need the manual execution of many computer programs, and the manipulation of thousands of files, was efficiently and automatically performed by FReDoWS. Its friendly interface allows the user to change the docking and execution parameters. Besides, the snapshot selection feature allowed the acceleration of docking simulations. We expect FReDoWS to help us explore more of the role flexibility plays in receptor-ligand interactions. FReDoWS can be made available upon request to the authors.</p

    Baker-Polito Administration to Embark on Israeli Economic Development Mission

    Get PDF
    Abstract Background In the rational drug design process, an ensemble of conformations obtained from a molecular dynamics simulation plays a crucial role in docking experiments. Some studies have found that Fully-Flexible Receptor (FFR) models predict realistic binding energy accurately and improve scoring to enhance selectiveness. At the same time, methods have been proposed to reduce the high computational costs involved in considering the explicit flexibility of proteins in receptor-ligand docking. This study introduces a novel method to optimize ensemble docking-based experiments by reducing the size of an InhA FFR model at docking runtime and scaling docking workflow invocations on cloud virtual machines. Results First, in order to find the most affordable cost-benefit pool of virtual machines, we evaluated the performance of the docking workflow invocations in different configurations of Azure instances. Second, we validated the gains obtained by the proposed method based on the quality of the Reduced Fully-Flexible Receptor (RFFR) models produced using AutoDock4.2. The analyses show that the proposed method reduced the model size by approximately 50% while covering at least 86% of the best docking results from the 74 ligands tested. Third, we tested our novel method using AutoDock Vina, a different docking software, and showed the positive accuracy achieved in the resulting RFFR models. Finally, our results demonstrated that the method proposed optimized ensemble docking experiments and is applicable to different docking software. In addition, it detected new binding modes, which would be unreachable if employing only the rigid structure used to generate the InhA FFR model. Conclusions Our results showed that the selective method is a valuable strategy for optimizing ensemble docking-based experiments using different docking software. The RFFR models produced by discarding non-promising snapshots from the original model are accurately shaped for a larger number of ligands, and the elapsed time spent in the ensemble docking experiments are considerably reduced

    Clustering Molecular Dynamics Trajectories for Optimizing Docking Experiments

    Get PDF
    Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand

    wFReDoW: A Cloud-Based Web Environment to Handle Molecular Docking Simulations of a Fully Flexible Receptor Model

    Get PDF
    Molecular docking simulations of fully flexible protein receptor (FFR) models are coming of age. In our studies, an FFR model is represented by a series of different conformations derived from a molecular dynamic simulation trajectory of the receptor. For each conformation in the FFR model, a docking simulation is executed and analyzed. An important challenge is to perform virtual screening of millions of ligands using an FFR model in a sequential mode since it can become computationally very demanding. In this paper, we propose a cloud-based web environment, called web Flexible Receptor Docking Workflow (wFReDoW), which reduces the CPU time in the molecular docking simulations of FFR models to small molecules. It is based on the new workflow data pattern called self-adaptive multiple instances (P-SaMIs) and on a middleware built on Amazon EC2 instances. P-SaMI reduces the number of molecular docking simulations while the middleware speeds up the docking experiments using a High Performance Computing (HPC) environment on the cloud. The experimental results show a reduction in the total elapsed time of docking experiments and the quality of the new reduced receptor models produced by discarding the nonpromising conformations from an FFR model ruled by the P-SaMI data pattern
    corecore