278 research outputs found
Alterations of cathepsins B, H and L in proximal tubules from polycystic kidneys of the Han:SPRD rat
Alterations of cathepsins B, H and L in proximal tubules from polycystic kidneys of the Han:SPRD rat. Abnormalities of tubular matrix metalloproteinases have been shown recently to occur early in the course of polycystic kidney disease (PKD). The present study was conducted to determine whether lysosomal cysteine proteinases were altered in proximal tubules from 2-month-old, heterozygous Han:SPRD rats. The activities of cathepsins B (-45%), H (-39%) and L (-37%) were significantly lower in proximal tubules from PKD rats as compared to healthy offspring. Enzyme proteins were also decreased (cath. B, 2.4 ± 0.7-fold; cath. H, 1.9 ± 0.6-fold; N = 4, P < 0.05), while mRNA levels for cathepsins B, H and L were not different. Tubular cystatin C, a major inhibitor of cathepsins, was normal with regard to protein and mRNA levels in PKD animals. The decrease in cathepsins in PKD was specific for tubules, as enzyme activities in glomeruli and liver tissue were unchanged and limited to the lysosomal compartment, since marker enzymes for cytoplasm, endoplasmatic reticulum and mitochondria were all normal. Intralysosomally, soluble enzymes like cathepsins and β-NAG were decreased, while membrane-bound acid phosphatase was unchanged. The presence of cathepsins could be demonstrated in cyst fluid from homozygous PKD rats and urinary excretion of cathepsins was enhanced in heterozygous animals. Taken together, these findings indicate that the reduction in tubular cathepsins B, H and L was neither due to decreased gene expression nor to upregulation of specific inhibitors, but was likely due to enhanced apical secretion of these enzymes
Alzheimer’s disease and retinal neurodegeneration share a consistent stress response of the neurovascular unit
Background: The pathogenesis of Alzheimer’s disease (AD) is characterized by neuronal injury, activation of microglia and astrocytes, deposition of amyloid-beta and secondary vessel degeneration. In the polycystic kidney disease (PKD) rat model, we observed neuronal injury, microglial activation and vasoregression. We speculated that this neuroretinal degeneration shares important pathogenetic steps with AD. Therefore, we determined the activation of astrocytes and the accumulation of amyloid-beta in PKD retinae. Methods: Immunohistochemistry of PKD retinae for vimentin, carboxymethyllysin, beta-Amyloid 1-42, High-Mobility-Group-Protein B1 and amyloid protein precursor was performed. Results: Adjunct to astrocyte activation, accumulation of beta-Amyloid 1-42 and High-Mobility-Group-Protein B1 in astrocytes and around vessels of the superficial network was found in PKD retinae prior to the onset of vasoregression. Amyloid precursor protein was localized adjacent to the outer segment of photoreceptors in PKD and control rats. The parallel appearance of AD-related peptides indicates an alarmine based response to photoreceptor degeneration and secondary vasoregression. Conclusion: The model has broad overlap with AD and may be suitable to study beneficial pharmacological concepts. Copyright (c) 2012 S. Karger AG, Base
Correction: cyst formation in the PKD2 (1-703) transgenic rat precedes deregulation of proliferation-related pathways
Background: Polycystic Kidney Disease is characterized by the formation of large fluid-filled cysts that eventually destroy the renal parenchyma leading to end-stage renal failure. Although remarkable progress has been made in understanding the pathologic mechanism of the disease, the precise orchestration of the early events leading to cyst formation is still unclear. Abnormal cellular proliferation was traditionally considered to be one of the primary irregularities leading to cyst initiation and growth. Consequently, many therapeutic interventions have focused on targeting this abnormal proliferation, and some have even progressed to clinical trials. However, the role of proliferation in cyst development was primarily examined at stages where cysts are already visible in the kidneys and therefore at later stages of disease development. Methods: In this study we focused on the cystic phenotype since birth in an attempt to clarify the temporal contribution of cellular proliferation in cyst development. Using a PKD2 transgenic rat model (PKD2 (1-703)) of different ages (0-60 days after birth) we performed gene expression profiling and phenotype analysis by measuring various kidney parameters. Results: Phenotype analysis demonstrated that renal cysts appear immediately after birth in the PKD2 transgenic rat model (PKD2 (1-703)). On the other hand, abnormal proliferation occurs at later stages of the disease as identified by gene expression profiling. Interestingly, other pathways appear to be deregulated at early stages of the disease in this PKD model. Specifically, gene expression analysis demonstrated that at day 0 the RAS system is involved. This is altered at day 6, when Wnt signaling and focal adhesion pathways are affected. However, at and after 24 days, proliferation, apoptosis, altered ECM signaling and many other factors become involved. Conclusions: Our data suggest that cystogenesis precedes deregulation of proliferation-related pathways, suggesting that proliferation abnormalities may contribute in cyst growth rather than cyst formation
Comparison of Raman and Mid-Infrared Spectroscopy for Real-Time Monitoring of Yeast Fermentations: A Proof-of-Concept for Multi-Channel Photometric Sensors
Raman and mid-infrared (MIR) spectroscopy are useful tools for the specific detection of molecules, since both methods are based on the excitation of fundamental vibration modes. In this study, Raman and MIR spectroscopy were applied simultaneously during aerobic yeast fermentations of Saccharomyces cerevisiae. Based on the recorded Raman intensities and MIR absorption spectra, respectively, temporal concentration courses of glucose, ethanol, and biomass were determined. The chemometric methods used to evaluate the analyte concentrations were partial least squares (PLS) regression and multiple linear regression (MLR). In view of potential photometric sensors, MLR models based on two (2D) and four (4D) analyte-specific optical channels were developed. All chemometric models were tested to predict glucose concentrations between 0 and 30 g L−1, ethanol concentrations between 0 and 10 g L−1, and biomass concentrations up to 15 g L−1 in real time during diauxic growth. Root-mean-squared errors of prediction (RMSEP) of 0.68 g L−1, 0.48 g L−1, and 0.37 g L−1 for glucose, ethanol, and biomass were achieved using the MIR setup combined with a PLS model. In the case of Raman spectroscopy, the corresponding RMSEP values were 0.92 g L−1, 0.39 g L−1, and 0.29 g L−1. Nevertheless, the simple 4D MLR models could reach the performance of the more complex PLS evaluation. Consequently, the replacement of spectrometer setups by four-channel sensors were discussed. Moreover, the advantages and disadvantages of Raman and MIR setups are demonstrated with regard to process implementation
A pilot study to assess the feasibility of transcutaneous glomerular filtration rate measurement using fluorescence-labelled sinistrin in dogs and cats
In dogs and cats an assessment of renal function is often needed, however, existing methods including urine and plasma clearances are invasive, cumbersome and time consuming. This pilot study evaluated the feasibility of a transcutaneous glomerular filtration rate (GFR) measurement in dogs and cats. Additionally the optimal dose and location for the transcutaneous measurement device were investigated. Renal elimination of fluorescein-isothiocyanate-labelled sinistrin (FITC-S) was measured transcutaneously for 4 hours. The procedures were performed in awake, freely moving animals using escalating doses of FITC-S (10 mg/kg, 30 mg/kg, 50 mg/kg) with a wash-out period of at least 24 h in between. Multiple devices were placed on each animal. The resulting FITC-S disappearance curves were visually assessed to determine the most suitable location and the appropriate dose to reach an adequate transcutaneous peak signal for kinetic analysis. In both species 30 mg/kg were adequate for kinetic calculation. The most suitable place for the device was the lateral thoracic wall in dogs and the ventral abdominal wall in cats, respectively. Transcutaneous FITC-S clearance was then repeated using the optimal dose and location and in parallel with an additional plasma sinistrin clearance. Plasma elimination half-lives [min] were 26, 31 and 35, and corresponding transcutaneous elimination half-lives [min] were 26, 34 and 55, respectively in the dogs. Plasma elimination half-lives [min] were 51, 60 and 61, and corresponding transcutaneous elimination half-lives [min] were 75, 96 and 83, respectively in the cats. In conclusion, transcutaneous FITC-S clearance is a feasible method for the assessment of GFR in awake dogs and cats. It is noninvasive, well tolerated and easy to perform even in a clinical setting with results being readily available. A dose of 30 mg/kg of FITC-S seems adequate for kinetic assessment. Further studies are now needed to establish reference values and evaluate transcutaneous renal clearance in various conditions
Microarray-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease
Background: MicroRNAs (miRNAs) play key roles in mammalian gene expression and several cellular processes, including differentiation, development, apoptosis and cancer pathomechanisms. Recently the biological importance of primary cilia has been recognized in a number of human genetic diseases. Numerous disorders are related to cilia dysfunction, including polycystic kidney disease (PKD). Although involvement of certain genes and transcriptional networks in PKD development has been shown, not much is known how they are regulated molecularly. Results: Given the emerging role of miRNAs in gene expression, we explored the possibilities of miRNA-based regulations in PKD. Here, we analyzed the simultaneous expression changes of miRNAs and mRNAs by microarrays. 935 genes, classified into 24 functional categories, were differentially regulated between PKD and control animals. In parallel, 30 miRNAs were differentially regulated in PKD rats: our results suggest that several miRNAs might be involved in regulating genetic switches in PKD. Furthermore, we describe some newly detected miRNAs, miR-31 and miR-217, in the kidney which have not been reported previously. We determine functionally related gene sets, or pathways to reveal the functional correlation between differentially expressed mRNAs and miRNAs. Conclusion: We find that the functional patterns of predicted miRNA targets and differentially expressed mRNAs are similar. Our results suggest an important role of miRNAs in specific pathways underlying PKD
Information-analytical systems as a basis of improving the efficiency of risk management
Building an effective system-risk management in an enterprise on the basis of integrated integration of risk management procedures into virtually all enterprise processes is associated with a wide range of tasks. Such integration processes can be simplified by using modern information technologies
Genome-wide comparison between IL-17 and combined TNF-alpha/IL-17 induced genes in primary murine hepatocytes
<p>Abstract</p> <p>Background</p> <p>Cytokines such as TNF-alpha and IL-1beta are known for their contribution to inflammatory processes in liver. In contrast, the cytokine IL-17 has not yet been assigned a role in liver diseases. IL-17 can cooperate with TNF-alpha to induce a synergistic response on several target genes in different cell lines, but no data exist for primary hepatocytes. To enhance our knowledge on the impact of IL-17 alone and combined with TNF-alpha in primary murine hepatocytes a comprehensive microarray study was designed. IL-1beta was included as this cytokine is suggested to act in a similar manner as the combination of TNF-alpha and IL-17, especially with respect to its role in mRNA stabilization.</p> <p>Results</p> <p>The present microarray analysis demonstrates that primary murine hepatocytes responded to IL-17 stimulation by upregulation of chemokines and genes, which are functionally responsible to increase and sustain inflammation. Cxcl2, Nfkbiz and Zc3h12a were strongly induced, whereas the majority of the genes were only very moderately up-regulated. Promoter analysis revealed involvement of NF-kappaB in the activation of many genes. Combined stimulation of TNF-alpha/IL-17 resulted in enhanced induction of gene expression, but significantly synergistic effects could be applied only to a few genes, such as Nfkbiz, Cxcl2, Zc3h12 and Steap4. Comparison of the gene expression profile obtained after stimulation of TNF-alpha/IL-17 versus IL-1beta proposed an "IL-1beta-like effect" of the latter cytokine combination. Moreover, evidence was provided that modulation of mRNA stability may be a major mechanism by which IL-17 regulates gene expression in primary hepatocytes. This assumption was exemplarily proven for Nfkbiz mRNA for the first time in hepatocytes. Our studies also suggest that RNA stability can partially be correlated to the existence of AU rich elements, but further mechanisms like the RNase activity of the up-regulated Zc3h12a have to be considered.</p> <p>Conclusions</p> <p>Our microarray analysis gives new insights in IL-17 induced gene expression in primary hepatocytes highlighting the crosstalk with the NF-kappaB signaling pathway. Gene expression profile suggests IL-17 alone and in concert with TNF-alpha a role in sustaining liver inflammatory processes. IL-17 might exceed this function by RNA stabilization.</p
Clinical-grade human skin-derived ABCB5+ mesenchymal stromal cells exert anti-apoptotic and anti-inflammatory effects in vitro and modulate mRNA expression in a cisplatin-induced kidney injury murine model
Acute kidney injury (AKI) is characterized by a rapid reduction in renal function and glomerular filtration rate (GFR). The broadly used anti-cancer chemotherapeutic agent cisplatin often induces AKI as an adverse drug side effect. Therapies targeted at the reversal of AKI and its potential progression to chronic kidney disease or end-stage renal disease are currently insufficiently effective. Mesenchymal stromal cells (MSCs) possess diverse immunomodulatory properties that confer upon them significant therapeutic potential for the treatment of diverse inflammatory disorders. Human dermal MSCs expressing ATP-Binding Cassette member B5 (ABCB5) have shown therapeutic efficacy in clinical trials in chronic skin wounds or recessive dystrophic epidermolysis bullosa. In preclinical studies, ABCB5+ MSCs have also shown to reverse metabolic reprogramming in polycystic kidney cells, suggesting a capacity for this cell subset to improve also organ function in kidney diseases. Here, we aimed to explore the therapeutic capacity of ABCB5+ MSCs to improve renal function in a preclinical rat model of cisplatin-induced AKI. First, the anti-apoptotic and immunomodulatory capacity was compared against research-grade adipose stromal cells (ASCs). Then, cross-species immunomodulatory capacity was checked, testing first inhibition of mitogen-driven peripheral blood mononuclear cells and then modulation of macrophage function. Finally, therapeutic efficacy was evaluated in a cisplatin AKI model. First, ABCB5+ MSCs suppressed cisplatin-induced apoptosis of human conditionally-immortalized proximal tubular epithelial cells in vitro, most likely by reducing oxidative stress. Second, ABCB5+ MSCs inhibited the proliferation of either human or rat peripheral blood mononuclear cells, in the human system via the Indoleamine/kynurenine axis and in the murine context via nitric oxide/nitrite. Third, ABCB5+ MSCs decreased TNF- secretion after lipopolysaccharide stimulation and modulated phagocytosis and in both human and rat macrophages, involving prostaglandin E2 and TGF- 1, respectively. Fourth, clinical-grade ABCB5+ MSCs grafted intravenously and intraperitoneally to a cisplatin-induced AKI murine model exerted modulatory effects on mRNA expression patterns toward an anti-inflammatory and pro-regenerative state despite an apparent lack of amelioration of renal damage at physiologic, metabolic, and histologic levels. Our results demonstrate anti-inflammatory and pro-regenerative effects of clinical grade ABCB5+ MSCs in vitro and in vivo and suggest potential therapeutic utility of this cell population for treatment or prevention of cisplatin chemotherapy-induced tissue toxicity
- …