61 research outputs found

    InterlACE Sound Coding for Unilateral and Bilateral Cochlear Implants

    Full text link
    Objective: Cochlear implant signal processing strategies define the rules of how acoustic signals are converted into electrical stimulation patterns. Technological and anatomical limitations, however, impose constraints on the signal transmission and the accurate excitation of the auditory nerve. Acoustic signals are degraded throughout cochlear implant processing, and electrical signal interactions at the electrode-neuron interface constrain spectral and temporal precision. In this work, we propose a novel InterlACE signal processing strategy to counteract the occurring limitations. Methods: By replacing the maxima selection of the Advanced Combination Encoder strategy with a method that defines spatially and temporally alternating channels, InterlACE can compensate for discarded signal content of the conventional processing. The strategy can be extended bilaterally by introducing synchronized timing and channel selection. InterlACE was explored unilaterally and bilaterally by assessing speech intelligibility and spectral resolution. Five experienced bilaterally implanted cochlear implant recipients participated in the Oldenburg Sentence Recognition Test in background noise and the spectral ripple discrimination task. Results: The introduced alternating channel selection methodology shows promising outcomes for speech intelligibility but could not indicate better spectral ripple discrimination. Conclusion: InterlACE processing positively affects speech intelligibility, increases available unilateral and bilateral signal content, and may potentially counteract signal interactions at the electrode-neuron interface. Significance: This work shows how cochlear implant channel selection can be modified and extended bilaterally. The clinical impact of the modifications needs to be explored with a larger sample size

    Evaluation of evoked potentials to dyadic tones after cochlear implantation

    Get PDF
    Auditory evoked potentials are tools widely used to assess auditory cortex functions in clinical context. However, in cochlear implant users, electrophysiological measures are challenging due to implant-created artefacts in the EEG. Here, we used independent component analysis to reduce cochlear implant-related artefacts in event-related EEGs of cochlear implant users (n = 12), which allowed detailed spatio-temporal evaluation of auditory evoked potentials by means of dipole source analysis. The present study examined hemispheric asymmetries of auditory evoked potentials to musical sounds in cochlear implant users to evaluate the effect of this type of implantation on neuronal activity. In particular, implant users were presented with two dyadic tonal intervals in an active oddball design and in a passive listening condition. Principally, the results show that independent component analysis is an efficient approach that enables the study of neurophysiological mechanisms of restored auditory function in cochlear implant users. Moreover, our data indicate altered hemispheric asymmetries for dyadic tone processing in implant users compared with listeners with normal hearing (n = 12). We conclude that the evaluation of auditory evoked potentials are of major relevance to understanding auditory cortex function after cochlear implantation and could be of substantial clinical value by indicating the maturation/reorganization of the auditory system after implantatio

    Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users

    Get PDF
    Cross-modal reorganization in the auditory cortex has been reported in deaf individuals. However, it is not well understood whether this compensatory reorganization induced by auditory deprivation recedes once the sensation of hearing is partially restored through a cochlear implant. The current study used electroencephalography source localization to examine cross-modal reorganization in the auditory cortex of post-lingually deafened cochlear implant users. We analysed visual-evoked potentials to parametrically modulated reversing chequerboard images between cochlear implant users (n = 11) and normal-hearing listeners (n = 11). The results revealed smaller P100 amplitudes and reduced visual cortex activation in cochlear implant users compared with normal-hearing listeners. At the P100 latency, cochlear implant users also showed activation in the right auditory cortex, which was inversely related to speech recognition ability with the cochlear implant. These results confirm a visual take-over in the auditory cortex of cochlear implant users. Incomplete reversal of this deafness-induced cortical reorganization might limit clinical benefit from a cochlear implant and help explain the high inter-subject variability in auditory speech comprehensio

    Predicting Cochlear Implant Electrode Placement Using Monopolar, Three-Point and Four-Point Impedance Measurements

    Full text link
    Objective: This study aimed to investigate the relationship between cochlear implant (CI) electrode distances to the cochleas inner wall (the modiolus) and electrical impedance measurements made at the CIs electrode contacts. We introduced a protocol for three-point impedances in which we recorded bipolar impedances in response to monopolar stimulation at a neighboring electrode. We aimed to assess the usability of three-point impedances and two existing CI impedance measurement methods (monopolar and four-point impedances) for predicting electrode positioning during CI insertion. Methods: Impedances were recorded during stepwise CI electrode array insertions in cadaveric human temporal bones. The positioning of the electrodes with respect to the modiolus was assessed at each step using cone beam computed tomography. Linear mixed regression analysis was performed to assess the relationship between the impedances and electrode-modiolar distances. The experimental results were compared to clinical impedance data and to an existing lumped-element model of an implanted CI. Results: Three-point and four-point impedances strongly correlated with electrode-modiolar distance. In contrast, monopolar impedances were only minimally affected by changes in electrode positioning with respect to the modiolus. An overall model specificity of 62% was achieved when incorporating all impedance parameters. This specificity could be increased beyond 73% when prior expectations of electrode positioning were incorporated in the model. Conclusion: Three-point and four-point impedances are promising measures to predict electrode-modiolar distance in real-time during CI insertion. Significance: This work shows how electrical impedance measurements can be used to predict the CIs electrode positioning in a biologically realistic model

    Differences in Supra-Threshold Auditory Function in young and elderly normal hearing Adults

    Full text link
    Prior studies investigated why older adults, even in the absence of hearing impairment, typically experience increased difficulties understanding speech in noise. ("Speech understanding and aging. Working Group on Speech Understanding and Aging. Committee on Hearing, Bioacoustics, and Biomechanics, Commission on Behavioral and Social Sciences and Education, National Research Council" 1988); (Dubno et al. 2002); Helfer et al. (2008) According to CHABA age has been found to be a determining factor in the ability to understand speech. This age effect can be related to age-dependent alterations in one or several of three processing domains: peripheral, central, and cognitive. The peripheral domain, in particular the performance of the inner ear is motivation in the present work. Our study covered a selection of measures of hearing acuity, temporal processing, frequency selectivity and a speech recognition task in noise to get a broad profile of performances between young and elderly listeners. For a realistic and external valid impression of hearing performance of young and elderly participants in the present study both groups were not matched. We knew about the supposed weakness in the design, as we dipped into the discussion of peripheral age-related factors. Our study focused on supra-threshold auditory functions in young and elderly listeners without self-reported hearing loss referring to worse speech identification performance in elderly and less ganglion cells in aging inner ears

    Neural adaptation and the ECAP response threshold: A pilot study

    No full text
    The electrically evoked compound action potential (ECAP) amplitude resulting from a train of pulses of finite duration (100 ms or 200 ms) was found to vary inversely to the stimulation rate (pulse rate), corroborating well with neural adaptation results from a previous study (Dillier et al., 2005). Amplitude growth functions based on these adapted responses yield thresholds (TNRT) that increase with increasing pulse rate, contrary to behavioural thresholds, which are known to vary inversely with the stimulation rate. Adaptation effects are therefore a confounding factor that must be accounted for when attempting to compare behavioural and objective measures

    Speech intelligibility in various noise conditions with the Nucleus® 5 CP810 Sound Processor

    No full text
    The Nucleus® 5 System Sound Processor (CP810, Cochlear™, Macquarie University, NSW, Australia) contains two omnidirectional microphones. They can be configured as a fixed directional microphone combination (called Zoom) or as an adaptive beamformer (called Beam), which adjusts the directivity continuously to maximally reduce the interfering noise. Initial evaluation studies with the CP810 had compared performance and usability of the new processor in comparison with the Freedom™ Sound Processor (Cochlear™) for speech in quiet and noise for a subset of the processing options. This study compares the two processing options suggested to be used in noisy environments, Zoom and Beam, for various sound field conditions using a standardized speech in noise matrix test (Oldenburg sentences test). Nine German-speaking subjects who previously had been using the Freedom speech processor and subsequently were upgraded to the CP810 device participated in this series of additional evaluation tests. The speech reception threshold (SRT for 50% speech intelligibility in noise) was determined using sentences presented via loudspeaker at 65 dB SPL in front of the listener and noise presented either via the same loudspeaker (S0N0) or at 90 degrees at either the ear with the sound processor (S0NCI+) or the opposite unaided ear (S0NCI-). The fourth noise condition consisted of three uncorrelated noise sources placed at 90, 180 and 270 degrees. The noise level was adjusted through an adaptive procedure to yield a signal to noise ratio where 50% of the words in the sentences were correctly understood. In spatially separated speech and noise conditions both Zoom and Beam could improve the SRT significantly. For single noise sources, either ipsilateral or contralateral to the cochlear implant sound processor, average improvements with Beam of 12.9 and 7.9 dB in SRT were found. The average SRT of –8 dB for Beam in the diffuse noise condition (uncorrelated noise from both sides and back) is truly remarkable and comparable to the performance of normal hearing listeners in the same test environment. The static directivity (Zoom) option in the diffuse noise condition still provides a significant benefit of 5.9 dB in comparison with the standard omnidirectional microphone setting. These results indicate that CI recipients may improve their speech recognition in noisy environments significantly using these directional microphone-processing options
    • …
    corecore