26 research outputs found

    Group models for fusion systems

    Get PDF
    We study group models for fusion systems and construct homology decompositions for the models of Robinson and Leary-Stancu type.Comment: 13 page

    Homology decompositions and groups inducing fusion systems

    Full text link
    We relate the construction of groups which realize saturated fusion systems and signaliser functors with homology decompositions of p-local finite groups. We prove that the cohomology ring of Robinson's construction is in some precise sense very close to the cohomology ring of the fusion system it realizes

    The Free Loop Space Homology of (n1)(n-1)-connected 2n2n-manifolds

    Full text link
    Our goal in this paper is to compute the integral free loop space homology of (n1)(n-1)-connected 2n2n-manifolds MM, n2n\geq 2. We do this when n2,4,8n\neq 2,4,8, or when n2n\neq 2 and H~(M)\tilde H^*(M) has trivial cup product squares, though the techniques used here should extend to a much wider range of manifolds. We also give partial information concerning the action of the Batalin-Vilkovisky operator.Comment: JHR

    Loop homology of spheres and complex projective spaces

    Full text link
    In his Inventiones paper, Ziller (Invent. Math: 1-22, 1977) computed the integral homology as a graded abelian group of the free loop space of compact, globally symmetric spaces of rank 1. Chas and Sullivan (String Topology, 1999)showed that the homology of the free loop space of a compact closed orientable manifold can be equipped with a loop product and a BV-operator making it a Batalin-Vilkovisky algebra. Cohen, Jones and Yan (The loop homology algebra of spheres and projective spaces, 2004) developed a spectral sequence which converges to the loop homology as a spectral sequence of algebras. They computed the algebra structure of the loop homology of spheres and complex projective spaces by using Ziller's results and the method of Brown-Shih (Ann. of Math. 69:223-246, 1959, Publ. Math. Inst. Hautes \'Etudes Sci. 3: 93-176, 1962). In this note we compute the loop homology algebra by using only spectral sequences and the technique of universal examples. We therefore not only obtain Zillers' and Brown-Shihs' results in an elementary way, we also replace the roundabout computations of Cohen, Jones and Yan (The loop homology algebra of spheres and projective spaces, 2004) making them independent of Ziller's and Brown-Shihs' work. Moreover we offer an elementary technique which we expect can easily be generalized and applied to a wider family of spaces, not only the globally symmetric ones.Comment: 10 pages, 8 figure

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    corecore