7 research outputs found

    Antimicrobial usage in broiler chicken production in the United States, 2013–2021

    Get PDF
    Although efforts to improve antimicrobial stewardship should include the collection of antimicrobial use data, most antimicrobial datasets collected at the national level consist of antimicrobial sales data which cannot inform stewardship. These data lack context, such as information regarding target species, disease indication, and regimen specifics like dose, route and duration. Therefore, the goal of this study was to develop a system for collecting data on the use of antimicrobials in the U.S. broiler chicken industry. This study utilized a public-private partnership to enable collection and protection of sensitive data from an extremely large industry while releasing deidentified and aggregated information regarding the details of antimicrobial use on U.S. broiler chicken farms over time. Participation was voluntary. Data were collected for the period 2013 through 2021 and are reported on a calendar year basis. Using production statistics from USDA:NASS as a denominator, the data supplied by participating companies represented approximately 82.1% of broiler chicken production in the U.S. in 2013, approximately 88.6% in 2017, and approximately 85.0% in 2021. The data that were submitted for 2021 are based on approximately 7,826,121,178 chickens slaughtered and 50,550,817,859 pounds liveweight produced. Granular flock-level treatment records were available for 75–90% of the birds represented in the 2018–2021 dataset. There was no use of antimicrobials in the hatchery for the years 2020 and 2021. Medically important in-feed antimicrobial use decreased substantially, with all in-feed tetracycline use being eliminated by 2020, and the use of virginiamycin being reduced by more than 97% since 2013. Medically important water-soluble antimicrobials are used for the treatment of disease in broiler production. Use decreased substantially for most water-soluble antimicrobials. The most important diseases necessitating treatment were necrotic enteritis and gangrenous dermatitis as well as E. coli-related disease. A focus on reducing the incidence of these diseases would reduce the need for antimicrobial therapy but will require an investment in research to find efficacious and cost-effective interventions for these diseases

    On-farm antimicrobial usage in commercial turkey production in the United States, 2013–2021

    Get PDF
    A key component of antimicrobial stewardship is the ability to collect antimicrobial use data and ultimately use this information to ensure that administrations are necessary and effective. National antimicrobial sales data cannot help in this capacity because the data lack context, for example, details concerning target species and disease indication. The objective of this study was to continue the development of a system for collecting flock-level on-farm antimicrobial use data from the U.S. turkey industry and to have it be representative of national turkey production in the U.S. This study utilized a public-private partnership to enable collection and protection of sensitive flock-level data from an extremely large industry while releasing deidentified and aggregated information regarding the details of antimicrobial use on U.S. turkey farms over time. Participation was voluntary. Data were collected for the period 2013 through 2021 and are reported on a calendar year basis. Using production statistics from USDA:NASS as a denominator, the data supplied by participating companies represented approximately 67.3% of turkey production in the U.S. in 2013, approximately 69.1% in 2017, and approximately 71.4% in 2021. The data that were submitted for 2021 are based on approximately 149,000,192 turkeys slaughtered and 4,929,773,506 pounds liveweight produced. Detailed prescription records representing approximately 60–70% of the birds were available for the 2018–2021 dataset. The estimated percentage of turkey poults placed that received hatchery antimicrobials decreased from 96.9% in 2013 to 40.5% in 2021. The use of in-feed antimicrobials was practically eliminated, with in-feed tetracycline being the only medically important antimicrobial used in 2021. Use of in-feed tetracyclines decreased approximately 80% between 2013 and 2021. Water-soluble antimicrobial use declined over the study period. Between 2013 and 2021, water-soluble penicillin use decreased approximately 41% but water-soluble tetracycline use increased approximately 22%. Key diseases that were treated with water-soluble antimicrobials included bacterial poult enteritis and clostridial dermatitis. Efforts to reduce the incidence of these diseases would reduce the need for antimicrobial therapy, thereby enabling continued decreases in antimicrobial use without sacrificing animal welfare. However, this will require an investment in research to find efficacious and cost-effective mitigation strategies

    Antimicrobial use in 20 U.S. beef feedyards: 2018–2019

    Get PDF
    The objective of this study was to report antimicrobial use in a convenience sample of U.S. beef feedyards for the years 2018 and 2019. In addition to antimicrobial use metrics, also reported are the indications for antimicrobial use and outcomes related to these indications. Antimicrobial use is characterized at the study and feedyard levels for a total of 1,141,846 head of cattle in 20 U.S. feedyards. Antimicrobial use is reported as milligrams of active antimicrobial ingredient per kilogram of liveweight sold (mg/kg-LW) and regimens of antimicrobials per animal year (Reg/AY). Regimens are described by antimicrobial class within use category as characterized by mg of active antimicrobial product per regimen (mg/Reg) and calendar days of administration per regimen (CDoA/Reg). A total of 1,128,515 regimens of medically important antimicrobials were captured from records. The number of regimens/100 head-in (Reg/100 head-in) are described in a subset of 10 feedyards with adequate data granularity to directly determine indications for antimicrobial administration. For the indications of bovine respiratory disease (BRD), Lameness (Lame), Liver Abscess Control (LAC), and Other (e.g., central nervous system disease, cellulitis) the Reg/100 head-in study-level values are 37.1, 0.8, 98.4, and 0.7, respectively, for 2018, with similar values for 2019. The regimens for BRD are further categorized in these 10 feedyards by the use categories in-feed, control of BRD, and individual animal therapy, yielding study level values of 4.6, 19.6, and 12.9 Reg/100 head-in, respectively, for 2018, with similar values for 2019. Outcomes of therapy for individual animal treatment of BRD, Lame, and Other are reported as treatment success, retreatment, or mortality by 30 days after the initial therapy of an animal for a disease. Treatment success rates (no treatment or mortality in the next 30 days) for 2018 in the 10 feedyards with sufficient data granularity are 76.5, 86.5, and 83.0% for BRD, Lame, and Other, respectively. The comparison of these results with other reports of antimicrobial use in North American feedyards highlights how differing approaches in calculating metric values may result in substantially different conclusions regarding antimicrobial use, especially in relation to long-duration uses

    Data_Sheet_1_Antimicrobial usage in broiler chicken production in the United States, 2013–2021.XLSX

    No full text
    Although efforts to improve antimicrobial stewardship should include the collection of antimicrobial use data, most antimicrobial datasets collected at the national level consist of antimicrobial sales data which cannot inform stewardship. These data lack context, such as information regarding target species, disease indication, and regimen specifics like dose, route and duration. Therefore, the goal of this study was to develop a system for collecting data on the use of antimicrobials in the U.S. broiler chicken industry. This study utilized a public-private partnership to enable collection and protection of sensitive data from an extremely large industry while releasing deidentified and aggregated information regarding the details of antimicrobial use on U.S. broiler chicken farms over time. Participation was voluntary. Data were collected for the period 2013 through 2021 and are reported on a calendar year basis. Using production statistics from USDA:NASS as a denominator, the data supplied by participating companies represented approximately 82.1% of broiler chicken production in the U.S. in 2013, approximately 88.6% in 2017, and approximately 85.0% in 2021. The data that were submitted for 2021 are based on approximately 7,826,121,178 chickens slaughtered and 50,550,817,859 pounds liveweight produced. Granular flock-level treatment records were available for 75–90% of the birds represented in the 2018–2021 dataset. There was no use of antimicrobials in the hatchery for the years 2020 and 2021. Medically important in-feed antimicrobial use decreased substantially, with all in-feed tetracycline use being eliminated by 2020, and the use of virginiamycin being reduced by more than 97% since 2013. Medically important water-soluble antimicrobials are used for the treatment of disease in broiler production. Use decreased substantially for most water-soluble antimicrobials. The most important diseases necessitating treatment were necrotic enteritis and gangrenous dermatitis as well as E. coli-related disease. A focus on reducing the incidence of these diseases would reduce the need for antimicrobial therapy but will require an investment in research to find efficacious and cost-effective interventions for these diseases.</p

    Table_1_Antimicrobial usage in broiler chicken production in the United States, 2013–2021.PDF

    No full text
    Although efforts to improve antimicrobial stewardship should include the collection of antimicrobial use data, most antimicrobial datasets collected at the national level consist of antimicrobial sales data which cannot inform stewardship. These data lack context, such as information regarding target species, disease indication, and regimen specifics like dose, route and duration. Therefore, the goal of this study was to develop a system for collecting data on the use of antimicrobials in the U.S. broiler chicken industry. This study utilized a public-private partnership to enable collection and protection of sensitive data from an extremely large industry while releasing deidentified and aggregated information regarding the details of antimicrobial use on U.S. broiler chicken farms over time. Participation was voluntary. Data were collected for the period 2013 through 2021 and are reported on a calendar year basis. Using production statistics from USDA:NASS as a denominator, the data supplied by participating companies represented approximately 82.1% of broiler chicken production in the U.S. in 2013, approximately 88.6% in 2017, and approximately 85.0% in 2021. The data that were submitted for 2021 are based on approximately 7,826,121,178 chickens slaughtered and 50,550,817,859 pounds liveweight produced. Granular flock-level treatment records were available for 75–90% of the birds represented in the 2018–2021 dataset. There was no use of antimicrobials in the hatchery for the years 2020 and 2021. Medically important in-feed antimicrobial use decreased substantially, with all in-feed tetracycline use being eliminated by 2020, and the use of virginiamycin being reduced by more than 97% since 2013. Medically important water-soluble antimicrobials are used for the treatment of disease in broiler production. Use decreased substantially for most water-soluble antimicrobials. The most important diseases necessitating treatment were necrotic enteritis and gangrenous dermatitis as well as E. coli-related disease. A focus on reducing the incidence of these diseases would reduce the need for antimicrobial therapy but will require an investment in research to find efficacious and cost-effective interventions for these diseases.</p

    Data_Sheet_1_The association of multiple metrics for evaluating antimicrobial use in U.S. beef feedyards.pdf

    No full text
    In order to accurately portray antimicrobial use in food animals, the need for standardized metrics, and an understanding of the characteristics of different metrics, has long been recognized. Fourteen U.S. feedyards were used to evaluate the effects of using centralized constants such as defined daily dose (DDD) and defined course dose (DCD) applied to the weight of medically important antimicrobials by class (mg) as opposed to using electronic individual animal treatment records and lot level in-feed antimicrobial records obtained from the same population. Three numerators were calculated directly from recorded data for each drug product: the number of antimicrobial regimens associated with indication (Reg), milligrams of drug administered per regimen (mg), and calendar days of administration for each regimen (CDoA). There were four use indications to which numerators were assigned: liver abscess control (LAC), bovine respiratory disease (BRD), lameness (lame), or all other indications combined (other). Three denominators were also calculated directly from the data, these being the number of days animals were present (head days), number of cattle received (head in), and kilograms of live weight sold (kg-LW). Numerators and denominators were calculated at the lot level. The use of DDD or DCD was explored to determine how their use would affect interpretation of comparisons between lots or feedyards. At the lot level across both study years, the lot estimate of nDDD differed from the CDoA value by >25% in 49.2% of the lots. The number of Defined Course Doses (nDCD) was then compared to the number of Regimens (Reg). Comparing nDCD to Reg at the lot level across both study years, the lot estimate of nDCD differed from the Reg value by >25% in 46.4% of lots. Both year and metric were also shown to affect numerical feedyard ranking by antimicrobial use according to seven different metrics. The analysis reported here adds to the body of literature reporting substantial effects of metric choice on the conclusions drawn from comparing antimicrobial use across multiple production sites.</p

    Individualising Therapy to Minimize Bacterial Multidrug Resistance

    No full text
    corecore