13 research outputs found

    Error handling and controller design for controller area network-based networked control system

    Get PDF
    Networked Control System (NCS) is a feedback control system which dynamic process is running via the communication channel. Surrounded by many choices of network types that can be used to establish an NCS, Controller Area Network (CAN) is a popular choice widely used in most real-time applications. Under harsh environment, fault at transmission line for CAN-based NCS is more prominent compared to fault in network nodes. Fault in bus line of CAN will induce data error which will result in data dropout or/and time delay which consequently lead to performance degradation or system instability. In this thesis, strategies to handle fault occurrence in CAN bus are proposed in order to properly analyse the effect of fault to CAN-based NCS performance. To implement the strategies, first, fault occurrences are modelled based on fault inter-arrival time, fault bursts duration and Poisson law. By using fault and message attributes, Response Time Analysis (RTA) is performed and the probability of NCS message that misses its deadline is calculated based on Homogeneous Poisson Process (HPP). A new error handling algorithm per-sample-error-counter (PSeC) is introduced to replace native error handling of CAN. PSeC mechanism is designed based on online monitoring and counting of erroneous sensor and control signal data at every sampling instance and it gives a bound parameters known as Maximum Allowable Number of Data Retransmission (MADR). If the number of retransmission for NCS message violates the value of MADR, the data will be discarded. With the utilization of PSeC mechanism to replace the Native Error Handling (NEH) of CAN, the probability of NCS message that misses its deadline can be translated to the probability of data dropout of NCS message. Despite the PSeC has prevented network from congestion which can lead to prolonged loop delay, it also introduces one-step loop delay and data dropout. Therefore, the controller that is able to compensate the effect of delay and data dropout should be introduced. Thus, a control algorithm is designed based on Lyapunov stability theory formulated in Linear Matrix Inequality (LMI) form by taking into account network delay and data dropout probability. In order to proof the efficacy of the strategies, Steer-by-Wire (SbW) system is used and simulated in TrueTime MATLAB R /Simulink environment. Simulation results show that the strategies of introducing PSeC mechanism and the designed controller in this work have superior performance than NEH mechanism for CAN-based NCS environment in terms of integral of the absolute error (IAE) and energy consumption

    Squirrel Cage Induction Motor Scalar Control Constant V/F Analysis

    Get PDF
    In constant V/f control technique it is assume that the stator resistance and leakage inductance drops are negligible, especially at high speed and small load. In other words, the back emf is comparatively large at high speed and hence these voltage drops can be neglected. By maintaining constant V/f, constant Eg/f and hence constant air-gap flux is assumed. This assumption is however invalid at low speeds since a significant voltage drop appears across the stator impedance. The terminal voltage, V no longer approximates ag. By using MATLAB Simulink, the open-loop constant V/f is simulated. It is shown that the performance of the drive deteriorates at low speeds. The improvement in the performance by applying voltage boost is shown and discussed

    Linear Discriminate Analysis And K-Nearest Neighbor Based Diagnostic Analytic Of Harmonic Source Identification

    Get PDF
    The diagnostic analytic of harmonic source is crucial research due to identify and diagnose the harmonic source in the power system. This paper presents a comparison of machine learning (ML) algorithm known as linear discriminate analysis (LDA) and k-nearest neighbor (KNN) in identifying and diagnosing the harmonic sources. Voltage and current features that estimated from time-frequency representation (TFR) of S-transform analys is are used as the input for ML. Several unique cases of harmonic source location are considered, whereas harmonic voltage (HV) and harmonic current (HC) source type-load are used in the diagnosing process. To identify the best ML, each ML algorithm is executed 10 times due to prevent any overfitting result and the performance criteria are measured consist of the accuracy, precision, geometric mean, specificity, sensitivity, and F-measure are calculated

    PID-based temperature control device for electric kettle

    Get PDF
    A normal electric kettle usually is intended to boil water until boiling point and cannot be controlled. Most of the kettle does not provide the temperature display for user to track the current temperature reading. Thus, this project is inspired from the shortcoming of most kettles that are sold at the market. By using Arduino microcontroller, a device is developed to control water temperature inside electric kettle. To provide automated temperature control, PID controller is chosen since it can provides precise water temperature control with less fluctuation. The device is also equipped with the display of the current water temperature and desired temperature. The device is tested to an electric kettle and the performance of PID controller in controlling water temperature is compared to on-off controller. An analysis is performed based on the amount of fluctuation with respect to desired temperature to verify the efficacy of the designed circuit and controller. It is found that the developed device and PID controller are capable to control the water temperature inside kettle based on the desired temperature set by user with less amount of fluctuatio

    Development Of An Automatic Can Crusher Using Programmable Logic Controller

    Get PDF
    The invention of a can crusher machine in this project is to reduce the wasted storage space occupied by the tremendous amount of use aluminium can at the commercial establishment like in the restaurant, cafeteria and bar. Basically, can crusher machine be operated in manual effort and time in the can crushing process. Shrinking the initial volume of empty used-aluminium cans down to 50% in more effective, faster and effortless way, as well as to develop a low-cost device that is suitable for the small-industry usage are mainly the objectives for the Automatic Can Crusher, where an automated process is executed in Automatic Can Crusher due to the automation in the modern world is inevitable and nominal to be used. The Automatic Can Crusher is run by a Programmable Logic Controller (PLC) with the aid of an inductive and capacitive sensor, where it is applied to detect whether the object is metal or non-metal. Overall, the system can be controlled manually through the push start and stop button as well as using the Human Machine Interface (HMI) using NB-Designer, for displaying the total of cans being crushed per day. The average result of empty can could shrink from 31% to 60 % of the original value, by using the attuned and compatible pressure for this system

    Sliding mode controller for a stepper motor

    No full text
    Stepper motor is an electromechanical actuator widely used as positioning device due to its small size, reliable and relatively low maintenance cost. Furthermore, the permanent-magnet stepper motor gives better torque/weight ratio than the DC motor. However, the control problem of the stepper motor is complex due to the nonlinearities, the load torque perturbation, and the parameter uncertainties. Static Sliding Mode Controller (SMC) has been used in this project to give robust performance of stepper motor under various system conditions. The stepper motor is treated as differently flat system in which this approach has been formulated as a 'decouple' linear system leading to the simpler controller design. The dynamic equation of stepper motor is transformed into a class of nonlinear system representation by using a method known as Direct-Quadrature (DQ) transformation. A sliding surface is constituted by the direct current supply stabilization error and rotor angular position error. The implementation of designed static sliding mode controller is performed in simulation using MATLAB Simulink. The controller demonstrates that the response of a permanent magnet stepper motor is improved especially when driving at high inertia load and also robust to parameter uncertainties, disturbance and load torque perturbation

    Similarity paper report-Linear discriminate analysis and knearest neighbor based diagnostic analytic of harmonic source identification

    Get PDF
    Mohd Hatta Jopri1, Abdul Rahim Abdullah2, Mustafa Manap3, Mohd Badril Nor Shah4, Tole Sutikno5, Jingwei To
    corecore