80 research outputs found

    Hexavalent molybdenum reduction to mo-blue by acinetobacter calcoaceticus

    Get PDF
    A local molybdenum-reducing bacterium was isolated and tentatively identified as Acinetobacter calcoaceticus strain Dr.Y12 based on carbon utilization profiles using Biolog GN plates and 16S rDNA comparative analysis. Molybdate reduction was optimized under conditions of low dissolved oxygen (37 degrees C and pH 6.5). Of the electron donors tested, glucose, fructose, maltose and sucrose supported molybdate reduction after 1 d of incubation, glucose and fructose supporting the highest Mo-blue production. Optimum Mo-blue production was reached at 20 mmol/L molybdate and 5 mmol/L phosphate; increasing the phosphate concentrations inhibited the production. An increase in an overall absorption profiles, especially at peak maximum at 865 nm and the shoulder at 700 nm, was observed in direct correlation with the increased in Mo-blue amounts. Metal ions, such as chromium, cadmium, copper, mercury and lead (2 mmol/L final concentration) caused approximately 88, 53, 80, 100, and 20 % inhibition, respectively. Respiratory inhibitors, such as antimycin A, rotenone, sodium azide and cyanide showed in this bacterium no inhibition of the Mo-blue production, suggesting that the electron transport system is not a site of molybdate reduction

    Reduction of molybdate to molybdenum blue by Enterobacter sp. strain DRY13.

    Get PDF
    Extensive use of metals in various industrial applications has caused substantial environmental pollution. Molybdenum-reducing bacteria isolated from soils can be used to remove molybdenum from contaminated environments. In this work we have isolated a local bacterium with the capability to reduce soluble molybdate to the insoluble molybdenum blue. We studied several factors that would optimize molybdate reduction. Electron donor sources such as glucose, sucrose, lactose, maltose and fructose (in decreasing efficiency) supported molybdate reduction after 24 h of incubation with optimum glucose concentration for molybdate reduction at 1.5% (w/v). The optimum pH, phosphate and molybdate concentrations, and temperature for molybdate reduction were pH 6.5, 5.0, 25 to 50 mM and 37 degrees C, respectively. The Mo-blue produced by cellular reduction exhibited a unique absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. Metal ions such as chromium, cadmium, copper, silver and mercury caused approximately 73, 71, 81, 77 and 78% inhibition of the molybdenum-reducing activity, respectively. All of the respiratory inhibitors tested namely rotenone, azide, cyanide and antimycin A did not show any inhibition to the molybdenum-reducing activity suggesting components of the electron transport system are not responsible for the reducing activity. The isolate was tentatively identified as Enterobacter sp. strain Dr.Y13 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny

    Bacterial reduction of hexavalent molybdenum to molybdenum blue.

    Get PDF
    A bacterium that was able to tolerate and reduce as high as 50 mM of sodium molybdate to molybdenum blue has been isolated from a metal recycling ground. The isolate was tentatively identified as Serratia sp. strain Dr.Y8 based on the carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. ANOVA analysis showed that isolate Dr.Y8 produced significantly higher (P < 0.05) amount of Mo-blue with 3, 5.1 and 11.3 times more molybdenum blue than previously isolated molybdenum reducers such as Serratia marcescens strain Dr.Y6, E. coli K12 and E. cloacae strain 48, respectively. Its molybdate reduction characteristics were studied in this work. Electron donor sources such as sucrose, mannitol, fructose, glucose and starch supported molybdate reduction. The optimum phosphate, pH and temperature that supported molybdate reduction were 5 mM, pH 6.0 and 37°C, respectively. The molybdenum blue produced from cellular reduction exhibited a unique absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. Metal ions such as chromium, silver, copper and mercury resulted in approximately 61, 57, 80, and 69% inhibition of the molybdenum-reducing activity at 1 mM, respectively. The reduction characteristics of strain Dr.Y8 suggest that it would be useful in future molybdenum bioremediation

    Isolation, identification and characterization of elevated phenol degrading Acinetobactersp. Strain AQ5NOL 1

    Get PDF
    The increasing phenol and phenolic wastes necessitates the screening of bacteria that are able to degrade phenol. 115 bacterial isolates from several industrial sites and farms in Malaysia were screened for phenol degrading activity in minimal salt media (MSM) containing 0.5 gL-1 phenol. Thirty seven bacterial isolates exhibited phenol degrading activity and of this total, 6 isolates showed high phenol activity after 8 days of incubation. The isolate with the highest phenol degrading activity was subsequently identified as Acinetobacter sp. Strain AQ5NOL 1 based on BiologTM GN plates and partial 16S rDNA molecular phylogeny. The optimum conditions for achieving high phenol degradation were 0.04% (w/v) (NH4)2SO4, 0.01% (w/v) NaCl, pH 7, and temperature of 30°C. Acinetobacter sp. Strain AQ5NOL 1 was found to degrade phenol of up to 1500 mgL-1 concentrations under the optimized conditions. The isolation of Acinetobacter sp Strain AQ5NOL 1 provides an alternative for the bioremediation of phenol and phenolic wastes

    Isolation and characterization of an SDS-degrading Klebsiella oxytoca.

    Get PDF
    Sodium dodecyl sulfate (SDS) is one of the main components in the detergent and cosmetic industries. Its bioremediation by suitable microorganism has begun to receive greater attention as the amount of SDS usage increases to a point where treatment plants would not be able to cope with the increasing amount of SDS in wastewater. The purpose of this work was to isolate local SDS-degrading bacteria. Screening was carried out by the conventional enrichment-culture technique. Six SDS-degrading bacteria were isolated. Of these isolates, isolate S14 showed the highest degradation of SDS with 90% degradation after three days of incubation. Isolate S14 was tentatively identified as Klebsiella oxytoca strain DRY14 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. SDS degradation by the bacterium was optimum at 37 degrees 0. Ammonium sulphate; at 2.0 g l(-1), was found to be the best nitrogen source for the growth of strain DRY14. Maximum growth on SDS was observed at pH 7.25. The strain exhibited optimum growth at SDS concentration of 2.0 g l(-1) and was completely inhibited at 10 g l(-1) SDS. At the tolerable initial concentration of 2.0 g l(-1), almost 80% of 2.0 g l(-1) SDS was degraded after 4 days of incubation concomitant with increase in cellular growth. The K(m(app) and V(max(app)) values calculated for the alkylsulfatase from this bacterium were 0.1 mM SDS and 1.07 micromol min(-1) mg(-1) protein, respectively

    Isolation and characterization of SDS-degrading Pseudomonas aeruginosa sp. strain D1

    Get PDF
    Surfactants are synthetic organic chemicals that are formulated to have cleansing or solubilisation properties. With the development of the industrial economy and increase in population density, surfactants have become one of the most widely disseminated xenobiotics to enter the aquatic environment, creating a serious environmental problem. Their toxicities to organisms have been demonstrated previously. The main objective of this study was to isolate and characterize local bacteria with the potential to degrade Sodium Dodecyl Sulphate (SDS), a widely used anionic surfactant. Screening was carried out by the enrichment culture technique and the isolate was tentatively identified as Pseudomonas aeruginosa sp. using BiologTM GN plates and partial 16S rDNA phylogeny. The optimal growth conditions in minimal medium and for degradation of SDS by Pseudomonas aeruginosa sp. were at 30°C and at pH 6.5 using phosphate buffer system. Sodium nitrate; at 8.0gL-1 was found to be the best nitrogen source. The isolated strain exhibited optimum growth at SDS concentration of 1gL-1 but can tolerate up to 14gL-1 SDS, indicating that this isolate was able to survive in a relatively high concentration of SDS. 100% of 1.0gL-1 SDS was completely degraded after 5 and 2 days of incubation before and after optimization respectively
    corecore