18 research outputs found
The Alterations of Erythrocyte Phospholipids in Type 2 Diabetes Observed after Oral High-Fat Meal Loading: The FTIR Spectroscopic and Mass Spectrometric Studies
Little is known about the postprandial remodelling of erythrocytes phospholipids (PLs) in type 2 diabetics (T2DM). Therefore, this study aims to compare the alterations of erythrocyte PLs in T2DM to those of healthy subjects after ingestion of a high-fat meal. Eleven T2DM and ten healthy subjects underwent a high-fat meal loading. Erythrocytes were isolated from blood obtained after fasting and 4 h after the meal. Fourier Transform Infrared (FTIR) spectroscopy was initially used to screen erythrocyte PLs by monitoring C-H stretching vibrations. Phosphatidylcholine (PC) molecular species were further investigated by Liquid Chromatography-Electrospray Ionisation-Mass Spectrometry (LC-ESI-MS). For the control group, FTIR revealed postprandial changes in C-H stretching vibrations, particularly of the olefinic band. These findings were supported by LC-ESI-MS data, showing marked changes in PC molecular species, especially of the PC34:1 (where 34 and 1 mean the summed number of carbons and double bonds, respectively). However, similar changes of those were not apparent in the T2DM group. Our results reveal marked postprandial alterations of erythrocyte PC species in healthy subjects whereas only mild alterations are observed in T2DM. The discrepant effects of high-fat meal loading suggest abnormal PC remodelling in the diabetic erythrocyte that may affect its membrane fluidity and integrity
Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid
Thymidylate synthase (TS) enzymes catalyse the biosynthesis of deoxythymidine monophosphate (dTMP or thymidylate), and so are important for DNA replication and repair. Two different types of TS proteins have been described (ThyA and ThyX), which have different enzymic mechanisms and unrelated structures. Mycobacteria are unusual as they encode both thyA and thyX, and the biological significance of this is not yet understood. Mycobacterium tuberculosis ThyX is thought to be essential and a potential drug target. We therefore analysed M. tuberculosis thyA and thyX expression levels, their essentiality and roles in pathogenesis. We show that both thyA and thyX are expressed in vitro, and that this expression significantly increased within murine macrophages. Under all conditions tested, thyA expression exceeded that of thyX. Mutational studies show that M. tuberculosis thyX is essential, confirming that the enzyme is a plausible drug target. The requirement for M. tuberculosis thyX in the presence of thyA implies that the essential function of ThyX is something other than dTMP synthase. We successfully deleted thyA from the M. tuberculosis genome, and this deletion conferred an in vitro growth defect that was not observed in vivo. Presumably ThyX performs TS activity within M. tuberculosis ΔthyA at a sufficient rate in vivo for normal growth, but the rate in vitro is less than optimal. We also demonstrate that thyA deletion confers M. tuberculosis
p-aminosalicylic acid resistance, and show by complementation studies that ThyA T202A and V261G appear to be functional and non-functional, respectively
Cloning and Expression of Mycobacterium tuberculosis and Mycobacterium leprae Dihydropteroate Synthase in Escherichia coli
The genes for dihydropteroate synthase of Mycobacterium tuberculosis and Mycobacterium leprae were isolated by hybridization with probes amplified from the genomic DNA libraries. DNA sequencing revealed an open reading frame of 840 bp encoding a protein of 280 amino acids for M. tuberculosis dihydropteroate synthase and an open reading frame of 852 bp encoding a protein of 284 amino acids for M. leprae dihydropteroate synthase. The dihydropteroate synthases were expressed under control of the T5 promoter in a dihydropteroate synthase-deficient strain of Escherichia coli. Using three chromatography steps, we purified both M. tuberculosis and M. leprae dihydropteroate synthases to >98% homogeneity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed molecular masses of 29 kDa for M. tuberculosis dihydropteroate synthase and 30 kDa for M. leprae dihydropteroate synthase. Gel filtration of both enzymes showed a molecular mass of ca. 60 kDa, indicating that the native enzymes exist as dimers of two identical subunits. Steady-state kinetic parameters for dihydropteroate synthases from both M. tuberculosis and M. leprae were determined. Representative sulfonamides and dapsone were potent inhibitors of the mycobacterial dihydropteroate synthases, but the antimycobacterial agent p-aminosalicylate, a putative dihydropteroate synthase inhibitor, was a poor inhibitor of the enzymes