2 research outputs found

    Effect of Clay as a Nanomaterial on Corrosion Potential of Steel Reinforcement Embedded in Ultra-High Performance Concrete

    Get PDF
    The effect of clay as nanomaterial or nanoclay (NC) on corrosion potential of steel reinforcement embedded in ultra-high performance concrete (UHPC) due to the early age properties of UHPC was investigated. In this present research, ordinary Portland cement (OPC) was partially replaced by NC at 1, 3, and 5 % by weight of cement to produce the nanoclayed UHPC. It is well recognized that the corrosion of steel reinforcement would affect the service life of the reinforced concrete structure performance. To overcome this problem, UHPC was benefited due to its superior characteristic in term of density and durability as compared to OPC concrete itself. In this present research, half-cell potential (HCP) was used to monitor and measure the corrosion potential of steel reinforcement embedded in UHPC and nanoclayed UHPC. Meanwhile, weight loss of corroded steel reinforcement and pH values of hardened UHPC and nanoclayed UHPC were also conducted as follows to the specific procedures. All the samples were immersed in 3 % sodium chloride solution up to 91 days of exposure. The results revealed that the corrosion activity of steel reinforcement embedded in UHPC with 5 % NC recorded the lowest corrosion potential readings compare to those UHPC. It is also shows that the pH value of concrete and weight loss of corroded steel reinforcement in UHPC alone is highest compared to UHPC incorporating different levels of NC. As regards to the results, it is revealed that replacing NC as a replacement to cement significantly enhanced the chloride penetration of nanoclayed UHPC. It is also indicated that the corrosion potential decreased with the increase of NC and as a result delayed the corrosion initiation

    Chloride Permeability of Nanoclayed Ultra-High Performance Concrete

    Get PDF
    It is widely recognized that the ingress of chlorides into concrete can initiate reinforcement corrosion and ultimately result in deterioration of the concrete structure. Chloride permeability of concrete has been recognized as a critical intrinsic property affecting the durability of reinforced concrete. From the previous research, the use of nano clay (NC) in cement mortar due to chloride permeability has been well-documented. In this paper, the ability of ultra-high performance concrete (UHPC) to withstand the action of chloride penetration were investigated. An experimental research was carried out in order to investigate the influence of incorporating NC material as cement replacement into ultra-high performance concrete (UHPC-NC) on chloride-related transport characteristic. The workability, compressive strength and charge passed in rapid chloride permeability test (RCPT) of UHPC-NC were reported. Those parameters were also determined for normal strength concrete (NPC) and plain without nano clay ultra-high performance concrete (UHPC) as comparison. Three (3) series of UHPC-NC mixes were produced incorporating 1 % (UHPC-NC1), 3 % (UHPC-NC3) and 5 % (UHPC-NC5) of NC replacing cement (OPC). The results showed that incorporating NC in concrete mixes causes a reduction in the workability. It was also found that replacing of OPC with NC improved the strength of UHPC-NC as compared to those mixes without NC material. The optimum NC replacement level recorded at 3 % (UHPC-NC3) from the total weight of OPC. For the chloride permeability, it is clearly shown that the presence of NC has important benefit in terms of chloride resistance
    corecore