15 research outputs found

    Therapeutic effect of hyperbaric oxygen in psoriasis vulgaris: two case reports and a review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Psoriasis is an inflammatory and immunological cutaneous disease. The high morbidity in patients with psoriasis results from severe clinical manifestations and/or adverse effects of treatment. The Undersea and Hyperbaric Medical Society and Federal Medicare and Medicaid Services have approved the use of hyperbaric oxygen (HBO<sub>2</sub>) for more than 15 indications, including wound healing, infections and late effects of radiation, which are largely unresponsive to conventional treatments. Accumulated data show that HBO<sub>2</sub> has anti-inflammatory effects and other positive influences on the immune system, making it a rational treatment in the management of psoriasis plaques and arthritis.</p> <p>Case presentation</p> <p>We present the cases of two patients with long histories of psoriasis vulgarus who exhibited marked improvement with use of HBO<sub>2.</sub> The first patient was 40 years old and had pustular psoriasis and psoriatic arthritis. He was treated with six sessions of HBO<sub>2</sub> (at 2.8 atmospheres of pressure for 60 minutes), which successfully controlled his symptoms. At the 18-month post-treatment follow up, the patient exhibited complete remission of psoriasis and marked improvement in psoriatic arthritis without medication. The second patient was 55 years old with extensive psoriatic lesions, and exhibited marked improvement within 15 sessions of HBO<sub>2</sub>. No adverse effects of HBO<sub>2</sub> were identified.</p> <p>Conclusions</p> <p>HBO<sub>2</sub> may possess potential therapeutic efficacy in the management of psoriasis. We outline the pathogenesis of psoriasis and the selective anti-inflammatory and immunosuppressive effects of HBO<sub>2</sub>. We hope that this will provide a basis for elucidating the mechanisms of action and consequently pave the way for further controlled studies.</p

    A Potential Concept In The Management of Tumors With Modulation of Prostaglandin, Nitric Oxide and Antioxidants

    Get PDF
    Prostaglandins (PGs), nitric oxide (NO), free radicals and chronic inflammation play a major role in tumorogenesis. We have found in vivo that PGs suppress antibody production; reduce serum iron, and modulate bone marrow function. Tumors are associated with immunosuppression and anemia. We have hypothesized that the over-production of PGs is responsible for immunosuppression and anemia in conditions associated with increased production of PG such as tumor, and that PG inhibitors might help reversing immunosuppression and anemia, and play a role in eradication and prevention of tumors. This is supported by reports that demonstrate the immunosuppressive effects of PGs in tumors. PG inhibitors have also been shown to be crucial in the prevention of tumors such as esophageal and colon cancers. Others and we have found that high NO production was encountered in patients with cancer while antioxidants are decreased. Evidence supports the efficacy of PG inhibition in malignancies, and the concept of PG inhibition, NO modulation, anti-oxidants, immunotherapy with antibody or immune cells, and anti-inflammatory agents when used in the prevention and management of malignancies are discussed

    Influence of Natural Honey on Biochemical and Hematological Variables in AIDS: A case study

    No full text
    Honey lowers prostaglandins and elevates nitric oxide (NO) in various biological fluids in normal persons. NO and prostaglandin play a role in pathogenesis of AIDS. The study was designed to assess the effect of natural honey on prostaglandins and NO levels, blood indices and biochemical tests in a 40 year-old woman with AIDS. This presentation is a case story of a 40 year-old women with a long history of AIDS treated with 80g of natural honey. Plasma and urinary prostaglandin F2 alpha and thromboxane B2 levels, plasma, urine and saliva content of NO-end product (total nitrite) and hematological tests were estimated before and 3 hours after oral consumption of 80g of natural honey. These variables, in addition to biochemical tests, were re-estimated after 21 days of daily consumption of 80g of natural honey. Results showed that prostaglandins level compared with normal subjects were elevated in patient with AIDS. Natural honey decreased prostaglandins levels, and elevated NO-end product, percentage of lymphocytes, platelet count, and serum protein, albumin and copper levels. It might be concluded that natural honey decreased prostaglandins level, elevated NO production and improved hematological and biochemical tests in a patient with a long history of AIDS

    The Safety and Efficacy of a Mixture of Honey, Olive Oil, and Beeswax for the Management of Hemorrhoids and Anal Fissure: A Pilot Study

    Get PDF
    We have found that a mixture of honey, olive oil, and beeswax was effective for treatment of diaper dermatitis, psoriasis, eczema, and skin fungal infection. The mixture has antibacterial properties. A prospective pilot study was conducted to evaluate the therapeutic effect of topical application of the mixture on patients with anal fissure or hemorrhoids.Fifteen consecutive patients, 13 males and 2 females, median age 45 years (range: 2870), who presented with anal fissure (5 patients) or first- to third-degree hemorrhoids (4 with first degree, 4 with second degree, and 2 with third degree), were treated with a 12-h application of a natural mixture containing honey, olive oil, and beeswax in ratio of 1:1:1(v/v/v). Bleeding, itching, edema, and erythema were measured using a scoring method: 0 = none, 1 = mild, 2 = moderate, 3 = severe, and 4 = very severe. The pain score was checked using a visual analog scale (minimum = 0, maximum = 10). Efficacy of treatment was assessed by comparing the symptoms' score before and after treatment; at weekly intervals for a maximum of 4 weeks. The patients were observed for evidence of any adverse effect such as appearance of new signs and symptoms, or worsening of the existing symptoms. The honey mixture significantly reduced bleeding and relieved itching in patients with hemorrhoids. Patients with anal fissure showed significant reduction in pain, bleeding, and itching after the treatment. No side effect was reported with use of the mixture. We conclude that a mixture of honey, olive oil, and beeswax is safe and clinically effective in the treatment of hemorrhoids and anal fissure, which paves the way for further randomized double blind studies

    Effects of Hyperbaric Oxygen on Inflammatory Response to Wound and Trauma: Possible Mechanism of Action

    No full text
    There is growing interest in expanding the clinical applications for HBO2 (hyperbaric oxygen therapy) into new medical and surgical fields. The pathophysiology of response towards wounds, infection, trauma, or surgery involves various chemical mediators that include cytokines, prostaglandins (PGs), and nitric oxide (NO). The beneficial role played by HBO2 in wound healing, carbon monoxide poisoning, decompression sickness, and other indications is well documented. However, the exact mechanism of action is still poorly understood. This review addresses the effects of HBO2 on PGs, NO, and cytokines involved in wound pathophysiology and inflammation in particular. The results of this review indicate that HBO2 has important effects on the biology of cytokines and other mediators of inflammation. HBO2 causes cytokine down-regulation and growth factor up-regulation. HBO2 transiently suppresses stimulus-induced proinflammatory cytokine production and affects the liberation of TNFα (tumor necrosis factor alpha) and endothelins. VEGF (vascular endothelial growth factor) levels are significantly increased with HBO2, whereas the value of PGE2 and COX-2 mRNA are markedly reduced. The effect of HBO2 on NO production is not well established and more studies are required. In conclusion, cytokines, PGs, and NO may play a major role in the mechanism of action of HBO2 and further research could pave the way for new clinical applications for HBO2 to be established. It could be proposed that chronic wounds persist due to an uncontrolled pathological inflammatory response in the wound bed and that HBO2 enhances wound healing by damping pathological inflammation (anti-inflammatory effects); this hypothetical proposal remains to be substantiated with experimental results

    Antioxidant activity and protective effect of bee bread (honey and pollen) in aluminum-induced anemia, elevation of inflammatory makers and hepato-renal toxicity

    No full text
    Aluminum toxicity might be related to oxidative stress, and the antioxidant activity and protective effect of bee bread, which contains pollen, honey and bees' enzymes, on aluminum induced blood and hepato-renal toxicity was investigated in rats. Chemical analysis and antioxidant capacity of bee bread were conducted. The animal experiment in rats included; group 1: received distilled water (10 ml/kg b.wt), group 2: received aluminum chloride (662.2 mg/kg b.wt), group 3: received aluminum chloride (662.2 mg/kg b.wt) and ethanolic extract of the bee bread (500 mg/kg b.wt), and group 4: received aluminum chloride (662.2 mg/kg b.wt) and ethanolic extract of the bee bread (750 mg/kg b.wt). Doses were given once daily via a gavage. C-reactive protein, transaminases, urea, creatinine, creatinine clearance, sodium and potassium and urine sodium and potassium were determined on day 28 of the experiment. Bee bread contained protein, fat, fiber, ash, carbohydrate, phenol and flavonoids and it exhibited antioxidant activity. Aluminum caused a significant elevation of blood urea, transaminase, C-reactive protein and monocyte count and significantly decreased hemoglobin. These changes were significantly ameliorated by the use of bee bread. Bee bread has an antioxidant property, and exhibited a protective effect on aluminum induced blood and hepato-renal toxicity and elevation of inflammatory markers C-reactive protein, leukocyte and monocyte counts

    Topical Application of Propolis Enhances Cutaneous Wound Healing by Promoting TGF-Beta/Smad-Mediated Collagen Production in a Streptozotocin-Induced Type I Diabetic Mouse Model

    No full text
    Background/Aims: Impaired wound healing is considered to be one of the most serious complications associated with diabetes as it significantly increases the susceptibility of patients to infection. Propolis is a natural bee product used extensively in foods and beverages that has significant benefits to human health. In particular, propolis has antioxidant, anti-inflammatory and analgesic effects that could be useful for improving wound healing. In this study, we investigated the effects of topical application of propolis on the healing and closure of diabetic wounds in a streptozotocin (STZ)-induced type I diabetic mouse model. Methods: Sixty male mice were distributed equally into 3 experimental groups: group 1, non-diabetic control mice; group 2, diabetic mice; and group 3, diabetic mice treated daily with a topical application of propolis. Results: We found that diabetic mice exhibited delayed wound closure characterized by a significant decrease in the levels of TGF-β1 and a prolonged elevation of the levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α) and MMP9 in wound tissues compared with control non-diabetic mice. Moreover, the wound tissues of diabetic mice showed a marked reduction in the phosphorylation of Smad2 and Smad3 as well as a marked reduction in collagen production. Interestingly, compared with untreated diabetic mice, topical application of propolis significantly enhanced the closure of diabetic wounds and decreased the levels of IL-1β, IL-6, TNF-α and MMP9 to near normal levels. Most importantly, compared with untreated diabetic mice, the treatment of diabetic mice with propolis significantly enhanced the production of collagen via the TGF-β1/Smad2,3 signaling axis in wounded tissues. Conclusion: Our findings reveal the molecular mechanisms underlying the improved healing and closure of diabetic wounds following topical propolis application

    RETRACTED ARTICLE: Oral supplementation of diabetic mice with propolis restores the proliferation capacity and chemotaxis of B and T lymphocytes towards CCL21 and CXCL12 by modulating the lipid profile, the pro-inflammatory cytokine levels and oxidative stress

    No full text
    Abstract Background Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease caused by the selective destruction of pancreatic β cells, followed by hyperglycemia, oxidative stress and the subsequent extensive impairment of immune cell functions, a phenomenon responsible for the development of chronic diabetic complications. Propolis, a natural bee product that is extensively used in foods and beverages, significantly benefits human health. Specifically, propolis exerts antioxidant, anti-inflammatory and analgesic effects that may improve diabetic complications. To further elucidate the potential benefits of propolis, the present study investigated the effect of dietary supplementation with propolis on the plasma cytokine profiles, free radical levels, lipid profile and lymphocyte proliferation and chemotaxis in a streptozotocin (STZ)-induced type I diabetic mouse model. Methods Thirty male mice were equally distributed into 3 experimental groups: group 1, non-diabetic control mice; group 2, diabetic mice; and group 3, diabetic mice supplemented daily with an ethanol-soluble derivative of propolis (100 mg/kg body weight) for 1 month. Results First, the induction of diabetes in mice was associated with hyperglycemia and significant decreases in the insulin level and the lymphocyte count. In this context, diabetic mice exhibited severe diabetic complications, as demonstrated by a significant decrease in the levels of IL-2, IL-4 and IL-7, prolonged elevation of the levels of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and reactive oxygen species (ROS) and altered lipid profiles compared with control non-diabetic mice. Moreover, antigen stimulation of B and T lymphocytes markedly reduced the proliferative capacity and chemotaxis of these cells towards CCL21 and CXCL12 in diabetic mice compared with control mice. Interestingly, compared with diabetes induction alone, treatment of diabetic mice with propolis significantly restored the plasma cytokine and ROS levels and the lipid profile to nearly normal levels. Most importantly, compared with untreated diabetic mice, diabetic mice treated with propolis exhibited significantly enhanced lymphocyte proliferation and chemotaxis towards CCL21 and CXCL12. Conclusion Our findings reveal the potential immuno-modulatory effects of propolis, which acts as a natural antioxidant to enhance the function of immune cells during diabetes
    corecore