12 research outputs found

    Polyamides based on a partially bio-based spirodiamine

    Get PDF
    In this study novel, fully and partially bio-based polyamides containing spiroacetal moieties in the backbone derived from bio-glycerol and bio-ethanol were prepared and characterized. The renewable diamine employed to obtain a series of polyamides was synthesized by means of thiolene click chemistry and therefore contains flexible thioether as well as rigid spiroacetal moieties. Two different chemical pathways for the polymerization were investigated and evaluated. The polymerization of polyamide salts proved to be the most promising method and therefore salt polymerization was applied in the synthesis of polyamides with aliphatic and aromatic di-carboxylic acids. Subsequently, the structure of the polymers was confirmed by Maldi-ToF analysis and additionally thermal and mechanical properties were investigated revealing T-g's between 24 and 80 degrees C and ductile materials with moduli between 1.0 and 1.5 GPa. Both semicrystalline and amorphous polyamides were thermally stable and therefore suitable for thermal processing. In the end, degradation studies were performed on the acetal containing polyamides which showed that the polymers were stable at pH 3 and higher

    A machine learning approach for the design of hyperbranched polymeric dispersing agents based on aliphatic polyesters for radiation-curable inks

    Get PDF
    Polymeric dispersing agents were prepared from aliphatic polyesters consisting of δ-undecalactone (UDL) and β,δ-trimethyl-ε-caprolactones (TMCL) as biobased monomers, which were polymerized in bulk via organocatalysts. Graft copolymers were obtained by coupling of the polyesters to poly(ethylene imine) (PEI) in the bulk without using solvents. Various parameters that influence the performance of the dispersing agents in pigment-based UV-curable matrices were investigated: chemistry of the polyester (UDL or TMCL), polyester/PEI weight ratio, molecular weight of the polyesters and of PEI. The performance of the dispersing agents was modelled using machine learning in order to increase the efficiency of the dispersant design. The resulting models were presented as analytical models for the individual polyesters and the synthesis conditions for optimally performing dispersing agents were indicated as a preference for high-molecular-weight polyesters and a polyester-dependent maximum polyester/PEI weight ratio

    Structure–Property Relations in New Cyclic Galactaric Acid Derived Monomers and Polymers Therefrom: Possibilities and Challenges

    No full text
    In order to fully exploit the potential of carbohydrate-based monomers, different (and some new) functionalities are introduced on galactaric acid via acetalization, and subsequently, partially-biobased polyamides are prepared therefrom via polycondensation in the melt. Compared to nonsubstituted linear monomer, faster advancement of the reaction is observed for the different biacetal derivatives of galactaric acid. This kinetic observation is of great significance since it allows conducting a polymerization reaction at lower temperatures than normally expected for polyamides, which allows overcoming typical challenges (e.g., thermal degradation) encountered upon polymerization of carbohydrate-derived monomers in the melt. The polymers derived from the modified galactaric acid monomers vary in terms of glass transition temperature, thermal stability, hydrophilicity, and functionality

    Polyamides based on a partially bio-based spirodiamine

    No full text
    In this study novel, fully and partially bio-based polyamides containing spiroacetal moieties in the backbone derived from bio-glycerol and bio-ethanol were prepared and characterized. The renewable diamine employed to obtain a series of polyamides was synthesized by means of thiolene click chemistry and therefore contains flexible thioether as well as rigid spiroacetal moieties. Two different chemical pathways for the polymerization were investigated and evaluated. The polymerization of polyamide salts proved to be the most promising method and therefore salt polymerization was applied in the synthesis of polyamides with aliphatic and aromatic di-carboxylic acids. Subsequently, the structure of the polymers was confirmed by Maldi-ToF analysis and additionally thermal and mechanical properties were investigated revealing T-g's between 24 and 80 degrees C and ductile materials with moduli between 1.0 and 1.5 GPa. Both semicrystalline and amorphous polyamides were thermally stable and therefore suitable for thermal processing. In the end, degradation studies were performed on the acetal containing polyamides which showed that the polymers were stable at pH 3 and higher

    Organocatalyzed ring opening polymerization of regio-isomeric lactones: reactivity and thermodynamics considerations

    No full text
    Organocatalysts are increasingly gaining attention for the ring opening polymerization (ROP) of lactones due to numerous advantages. In this work, the goal is to expand the scope of catalysts for the ROP of alkyl substituted caprolactones: a mixture of beta,delta-trimethyl-epsilon-caprolactones (TMCL). Several organocatalysts were evaluated, with a focus on bifunctional organophosphorus catalysts including two novel categories, namely phosphonic acids and phosphinic acids. The effects of initial monomer concentration, temperature, catalyst loading and catalyst type on the monomer conversion at equilibrium and the reaction kinetics were addressed. The ceiling temperature of TMCL is 302 degrees C in bulk and 34 degrees C at 1 M, as determined experimentally. During polymerization, higher conversion and reaction rates were observed for the most substituted lactone ( proximal lactone). This difference of reactivity between the two regio-isomeric lactones was greater for lower reaction temperatures. Density functional theory (DFT) calculations on the ring opening of the lactones demonstrated that the difference of reactivity can be attributed to a lower enthalpic contribution of the proximal lactone making the ring opening of this lactone more energetically favored. The difference in calculated Gibbs free energy was found to increase with lower temperature

    Hydrothermal polymerization towards fully biobased polyazomethines

    No full text
    Microwave assisted polycondensation for the synthesis of (partially) biobased polyazomethines in water (hydrothermal polymerization) was investigated for the first time in this study. The polyazomethines preparedviathis environmentally friendly and simple method show comparable characteristics as the polymers preparedviatraditional methods in organic solvents.</p

    Organocatalyzed ring opening polymerization of regio-isomeric lactones:reactivity and thermodynamics considerations

    No full text
    Organocatalysts are increasingly gaining attention for the ring opening polymerization (ROP) of lactones due to numerous advantages. In this work, the goal is to expand the scope of catalysts for the ROP of alkyl substituted caprolactones: a mixture of beta,delta-trimethyl-epsilon-caprolactones (TMCL). Several organocatalysts were evaluated, with a focus on bifunctional organophosphorus catalysts including two novel categories, namely phosphonic acids and phosphinic acids. The effects of initial monomer concentration, temperature, catalyst loading and catalyst type on the monomer conversion at equilibrium and the reaction kinetics were addressed. The ceiling temperature of TMCL is 302 degrees C in bulk and 34 degrees C at 1 M, as determined experimentally. During polymerization, higher conversion and reaction rates were observed for the most substituted lactone ( proximal lactone). This difference of reactivity between the two regio-isomeric lactones was greater for lower reaction temperatures. Density functional theory (DFT) calculations on the ring opening of the lactones demonstrated that the difference of reactivity can be attributed to a lower enthalpic contribution of the proximal lactone making the ring opening of this lactone more energetically favored. The difference in calculated Gibbs free energy was found to increase with lower temperature

    A machine learning approach for the design of hyperbranched polymeric dispersing agents based on aliphatic polyesters for radiation-curable inks

    No full text
    Polymeric dispersing agents were prepared from aliphatic polyesters consisting of δ-undecalactone (UDL) and β,δ-trimethyl-ε-caprolactones (TMCL) as biobased monomers, which were polymerized in bulk via organocatalysts. Graft copolymers were obtained by coupling of the polyesters to poly(ethylene imine) (PEI) in the bulk without using solvents. Various parameters that influence the performance of the dispersing agents in pigment-based UV-curable matrices were investigated: chemistry of the polyester (UDL or TMCL), polyester/PEI weight ratio, molecular weight of the polyesters and of PEI. The performance of the dispersing agents was modelled using machine learning in order to increase the efficiency of the dispersant design. The resulting models were presented as analytical models for the individual polyesters and the synthesis conditions for optimally performing dispersing agents were indicated as a preference for high-molecular-weight polyesters and a polyester-dependent maximum polyester/PEI weight ratio

    A machine learning approach for the design of hyperbranched polymeric dispersing agents based on aliphatic polyesters for radiation-curable inks

    Get PDF
    Polymeric dispersing agents were prepared from aliphatic polyesters consisting of δ-undecalactone (UDL) and β,δ-trimethyl-ε-caprolactones (TMCL) as biobased monomers, which were polymerized in bulk via organocatalysts. Graft copolymers were obtained by coupling of the polyesters to poly(ethylene imine) (PEI) in the bulk without using solvents. Various parameters that influence the performance of the dispersing agents in pigment-based UV-curable matrices were investigated: chemistry of the polyester (UDL or TMCL), polyester/PEI weight ratio, molecular weight of the polyesters and of PEI. The performance of the dispersing agents was modelled using machine learning in order to increase the efficiency of the dispersant design. The resulting models were presented as analytical models for the individual polyesters and the synthesis conditions for optimally performing dispersing agents were indicated as a preference for high-molecular-weight polyesters and a polyester-dependent maximum polyester/PEI weight ratio
    corecore