2 research outputs found

    Design of nanostructured polymeric materials for radiation shielding of ionizing radiations

    Get PDF
    This study seeks to provide a novel approach for producing technologically viable new radiation shielding materials to meet the safety requirements for use in medical X-ray imaging facilities. The approach was based on dispersing micro-sized and nano-sized heavy element fillers into polymeric materials using different filler dispersion methods such as melt-mixing, ion implantation and electrospinning. These materials have high potential application for shielding of X-rays in diagnostic radiology purposes

    Investigation Of The Laser-Assisted Hydrothermal Nanostructured ZnO

    Get PDF
    ZnO nanostructures are synthesize and fabricated successfully on glass substrates using a chemical bath deposition (CBD) technique. Then new design of continuous flow process has used at 0.05 M of zinc acetate hexahydrate [Zn (CH3COO)2.2H2O], 1.4 g of Hexamethylenetramine (CH2)6N4) and 250 mL of deionized water of the precursor solutions assisted by continuous wave laser irradiation at 532 nm laser wavelengths. The Ni and Pd, seed layers deposited and different growth time 20 and 25 min with same power. effects of different irradiation time 20 and 25 minutes. The x-ray diffraction (XRD) technique can exhibit well crystalline quality. Moreover, the FESEM images and energy dispersive x-ray spectra (EDX) shows uniformly distributed, dense ZnO nanostructures and the morphologies improved
    corecore