3 research outputs found

    Forecasting of SPI and Meteorological Drought Based on the Artificial Neural Network and M5P Model Tree

    No full text
    Climate change has caused droughts to increase in frequency and severity worldwide, which has attracted scientists to create drought prediction models to mitigate the impacts of droughts. One of the most important challenges in addressing droughts is developing accurate models to predict their discrete characteristics, i.e., occurrence, duration, and severity. The current research examined the performance of several different machine learning models, including Artificial Neural Network (ANN) and M5P Tree in forecasting the most widely used drought measure, the Standardized Precipitation Index (SPI), at both discrete time scales (SPI 3, SPI 6). The drought model was developed utilizing rainfall data from two stations in India (i.e., Angangaon and Dahalewadi) for 2000–2019, wherein the first 14 years are employed for model training, while the remaining six years are employed for model validation. The subset regression analysis was performed on 12 different input combinations to choose the best input combination for SPI 3 and SPI 6. The sensitivity analysis was carried out on the given best input combination to find the most effective parameter for forecasting. The performance of all the developed models for ANN (4, 5), ANN (5, 6), ANN (6, 7), and M5P models was assessed through the different statistical indicators, namely, MAE, RMSE, RAE, RRSE, and r. The results revealed that SPI (t-1) is the most sensitive parameters with highest values of β = 0.916, 1.017, respectively, for SPI-3 and SPI-6 prediction at both stations on the best input combinations i.e., combination 7 (SPI-1/SPI-3/SPI-4/SPI-5/SPI-8/SPI-9/SPI-11) and combination 4 (SPI-1/SPI-2/SPI-6/SPI-7) based on the higher values of R2 and Adjusted R2 while the lowest values of MSE values. It is clear from the performance of models that the M5P model has higher r values and lesser RMSE values as compared to ANN (4, 5), ANN (5, 6), and ANN (6, 7) models. Therefore, the M5P model was superior to other developed models at both stations.Validerad;2022;Nivå 2;2022-11-15 (hanlid)</p

    Phenotypic Investigation of Vancomycin, Teicoplanin and Linezolid Resistance Among Enterococcus spp. Isolated from Children Diarrhea

    No full text
    Vancomycin-resistant Enterococci(VRE) were common among Enterococcus. faecalis and Enterococcus faecium. Teicoplanin resistance or sensitivity can determine the VRE phenotypes whether VanA (VanR/TecR) or VanB (VanR/TecS). Linezolid resistance among VRE regards an newly emerged health problem. Infection with LRVRE or TRLRVRE pushan hazardous alert for hard to heal illness. Twenty eight Enterococcus spp. isolates were recovered from children diarrhea after their inoculation on m-EI chromogenic agar. Antibiotics susceptibility and phenotypic detection of antibiotics resistance were performed according to CLSI 2016. The results revealed 92.86% resistance to rifampin, 85.71% to erythromycin. VRE were 46.42%, TRE were 25% and LRE were 35.71% while co-existed resistance for Vancomycin/Teicoplanin/Linezolid(TRLRVRE) were detected 25% in. concern antibiotics resistant patterns, the MDR compile (85.7%) while XDR compile (10.7%) and there is no PDR among Enterococcus. spp. isolates were PDR. The presentstudy conclude that VanA and VanB phenotypes were common among MDR and XDR and although there is no using of linezolid but the emergence of TRLRVRE isolates were stated

    Combining APHRODITE Rain Gauges-Based Precipitation with Downscaled-TRMM Data to Translate High-Resolution Precipitation Estimates in the Indus Basin

    No full text
    Understanding the pixel-scale hydrology and the spatiotemporal distribution of regional precipitation requires high precision and high-resolution precipitation data. Satellite-based precipitation products have coarse spatial resolutions (~10 km–75 km), rendering them incapable of translating high-resolution precipitation variability induced by dynamic interactions between climatic forcing, ground cover, and altitude variations. This study investigates the performance of a downscaled-calibration procedure to generate fine-scale (1 km × 1 km) gridded precipitation estimates from the coarser resolution of TRMM data (~25 km) in the Indus Basin. The mixed geographically weighted regression (MGWR) and random forest (RF) models were utilized to spatially downscale the TRMM precipitation data using high-resolution (1 km × 1 km) explanatory variables. Downscaled precipitation estimates were combined with APHRODITE rain gauge-based data using the calibration procedure (geographical ratio analysis (GRA)). Results indicated that the MGWR model performed better on fit and accuracy than the RF model to predict the precipitation. Annual TRMM estimates after downscaling and calibration not only translate the spatial heterogeneity of precipitation but also improved the agreement with rain gauge observations with a reduction in RMSE and bias of ~88 mm/year and 27%, respectively. Significant improvement was also observed in monthly (and daily) precipitation estimates with a higher reduction in RMSE and bias of ~30 mm mm/month (0.92 mm/day) and 10.57% (3.93%), respectively, after downscaling and calibration procedures. In general, the higher reduction in bias values after downscaling and calibration procedures was noted across the downstream low elevation zones (e.g., zone 1 correspond to elevation changes from 0 to 500 m). The low performance of precipitation products across the elevation zone 3 (>1000 m) might be associated with the fact that satellite observations at high-altitude regions with glacier coverage are most likely subjected to higher uncertainties. The high-resolution grided precipitation data generated by the MGWR-based proposed framework can facilitate the characterization of distributed hydrology in the Indus Basin. The method may have strong adoptability in the other catchments of the world, with varying climates and topography conditions
    corecore