2 research outputs found

    A Multifactorial Approach for Surveillance of Shigella spp. and Entero-Invasive Escherichia coli Is Important for Detecting (Inter)national Clusters

    Get PDF
    Shigella spp. and entero-invasive Escherichia coli (EIEC) can cause mild diarrhea to dysentery. In Netherlands, although shigellosis is a notifiable disease, there is no laboratory surveillance for Shigella spp. and EIEC in place. Consequently, the population structure for circulating Shigella spp. and EIEC isolates is not known. This study describes the phenotypic and serological characteristics, the phenotypic and genetic antimicrobial resistance (AMR) profiles, the virulence gene profiles, the classic multi-locus sequence types (MLST) and core genome (cg)MLST types, and the epidemiology of 414 Shigella spp. and EIEC isolates collected during a cross-sectional study in Netherlands in 2016 and 2017. S. sonnei (56%), S. flexneri (25%), and EIEC (15%) were detected predominantly in Netherlands, of which the EIEC isolates were most diverse according to their phenotypical profile, O-types, MLST types, and cgMLST clades. Virulence gene profiling showed that none of the isolates harbored Shiga toxin genes. Most S. flexneri and EIEC isolates possessed nearly all virulence genes examined, while these genes were only detected in approximately half of the S. sonnei isolates, probably due to loss of the large invasion plasmid upon subculturing. Phenotypical resistance correlated well with the resistant genotype, except for the genes involved in resistance to aminoglycosides. A substantial part of the characterized isolates was resistant to antimicrobials advised for treatment, i.e., 73% was phenotypically resistant to co-trimoxazole and 19% to ciprofloxacin. AMR was particularly observed in isolates from male patients who had sex with men (MSM) or from patients that had traveled to Asia. Furthermore, isolates related to international clusters were also circulating in Netherlands. Travel-related isolates formed clusters with isolates from patients without travel history, indicating their emergence into the Dutch population. In conclusion, laboratory surveillance using whole genome sequencing as high-resolution typing technique and for genetic characterization of isolates complements the current epidemiological surveillance, as the latter is not sufficient to detect all (inter)national clusters, emphasizing the importance of multifactorial public health approaches

    Identification of Francisella tularensis Subspecies in a Clinical Setting Using MALDI-TOF MS: An In-House Francisella Library and Biomarkers.

    No full text
    Francisella tularensis is a zoonotic bacterium that is endemic in large parts of the world. It is absent in the standard library of the most applied matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems: the Vitek MS and the Bruker Biotyper system. The additional Bruker MALDI Biotyper Security library contains F. tularensis without subspecies differentiation. The virulence of F. tularensis differs between the subspecies. The F. tularensis subspecies (ssp.) tularensis is highly pathogenic, whereas the subspecies holarctica displays lower virulence and subspecies novicida and F. tularensis ssp. mediasiatica are hardly virulent. To differentiate the Francisellaceae and the F. tularensis-subspecies, an in-house Francisella library was built with the Bruker Biotyper system and validated together with the existing Bruker databases. In addition, specific biomarkers were defined based on the main spectra of the Francisella strains supplemented with in silico genome data. Our in-house Francisella library accurately differentiates the F. tularensis subspecies and the other Francisellaceae. The biomarkers correctly differentiate the various species within the genus Francisella and the F. tularensis subspecies. These MALDI-TOF MS strategies can successfully be applied in a clinical laboratory setting as a fast and specific method to identify F. tularensis to subspecies level
    corecore