5 research outputs found

    A Thiazolidinedione Improves In Vivo Insulin Action on Skeletal Muscle Glycogen Synthase in Insulin-Resistant Monkeys

    Get PDF
    Thiazolidinediones (TZD) have been shown to have anti-diabetic effects including the ability to decrease fasting hyperglycemia and hyperinsulinemia, increase insulin-mediated glucose disposal rate (M) and decrease hepatic glucose production, but the mechanisms of action are not well established. To determine whether a TZD (R-102380, Sankyo Company Ltd., Tokyo, Japan) could improve insulin action on skeletal muscle glycogen synthase (GS), the rate-limiting enzyme in glycogen synthesis, 4 insulin-resistant obese monkeys were given I mg/kg/ day R-102380 p.o. for a 6-week period. Skeletal muscle GS activity and glucose 6-phosphate (G6P) content were compared between pre-dosing and dosing periods before and during the maximal insulin-stimulation of a euglycemic hyperinsulinemic clamp

    Mortality and morbidity in laboratory-maintained Rhesus monkeys and effects of long-term dietary restriction

    No full text
    Mortality and morbidity were examined in 117 laboratory-maintained rhesus monkeys studied over approximately 25 years (8 dietary-restricted [DR] and 109 ad libitum-fed [AL] monkeys). During the study, 49 AL monkeys and 3 DR monkeys died. Compared with the DR monkeys, the AL monkeys had a 2.6-fold increased risk of death. Hyperinsulinemia led to a 3.7-fold increased risk of death ( p,.05); concordantly, the risk of death decreased by 7%, per unit increase in insulin sensitivity (M). There was significant organ pathology in the AL at death. The age at median survival in the AL was approximately 25 years compared with 32 years in the DR. The oldest monkey was a diabetic female (AL) that lived to be 40 years of age. These results suggest that dietary restriction leads to an increased average age of death in primates, associated with the prevention of hyperinsulinemia and the mitigation of age-related disease. THE morbidity and mortality rates for many humandiseases increases with age, leading investigators to examine the effects of aging on the onset and severity of human disease. However, successful gerontological inter-vention in age-related diseases has been complicated by the variation in the rate of aging processes across individual

    Insulin Signaling and Insulin Sensitizing in Muscle and Liver of Obese Monkeys: Peroxisome Proliferator-Activated Receptor Gamma Agonist Improves Defective Activation of Atypical Protein Kinase C

    No full text
    Obesity, the metabolic syndrome, and aging share several pathogenic features in both humans and non-human primates, including insulin resistance and inflammation. Since muscle and liver are considered key integrators of metabolism, we sought to determine in biopsies from lean and obese aging rhesus monkeys the nature of defects in insulin activation and, further, the potential for mitigation of such defects by an in vivo insulin sensitizer, rosiglitazone, and a thiazolidinedione activator of the peroxisome proliferator-activated receptor gamma. The peroxisome proliferator-activated receptor gamma agonist reduced hyperinsulinemia, improved insulin sensitivity, lowered plasma triglycerides and free fatty acids, and increased plasma adiponectin. In muscle of obese monkeys, previously shown to exhibit defective insulin signaling, the insulin sensitizer improved insulin activation of atypical protein kinase C (aPKC), the defective direct activation of aPKC by phosphatidylinositol (PI)-3,4,5-(PO4)3, and 5′-AMP-activated protein kinase and increased carnitine palmitoyltransferase-1 mRNA expression, but it did not improve insulin activation of insulin receptor substrate (IRS)-1-dependent PI 3-kinase (IRS-1/PI3K), protein kinase B, or glycogen synthase. We found that, although insulin signaling was impaired in muscle, insulin activation of IRS-1/PI3K, IRS-2/PI3K, protein kinase B, and aPKC was largely intact in liver and that rosiglitazone improved insulin signaling to aPKC in muscle by improving responsiveness to PI-3,4,5-(PO4)3. Antioxid. Redox Signal. 14, 207–219
    corecore