15 research outputs found

    NanoDCFH-DA: a silica based nanostructured fluorogenic probe for the detection of reactive oxygene species

    No full text
    A biocompatible fluorescent nanoprobe for the detection of reactive oxygen species in biological systems has been designed, synthesized and characterized, circumventing some of the limitations of the molecular probe diacetyl 2',7'-dihidrochlorodihydrofluorescein (DCFH-DA). It has been synthesized the nanoparticulate forme of DCFH-DA by convalently attaching the widely used fluorescent probe DCFH-DA to a mesoporous silica nanoparticle though a linker, The reactivity of nanoDCFH-DA has been tested toward several reactive oxygen species. In addition, it has been proven to slow down DCFH-DA reaction with molecular oxygen and it hampers from interactions with proteins. As a final piece of evidence, in vitro studies showed that the nanoprobe is internalized HeLa cancer cells, thus being capable of detecting intracellularly generated reactive oxygen species. To sum up, it can be stated that nanoDCFH-DA overcomes two major problems of free DCFH-DA, namely oxidation of the probe by air and interaction with proteins in biological systems. This 'nano' approach has thus proven useful to extend the utility of an existing and valuable fluorescent probe to complex biological systems

    Tuning the local solvent composition at a drug carrier surface: the effect of dimethyl sulfoxide/water mixture on the photofunctional properties of hypericin–β-lactoglobulin complexes

    No full text
    Aggregation is a major problem for the anti-microbial photodynamic applications of hydrophobic photosensitizers since it strongly reduces the amount of singlet oxygen generated in aqueous solutions. Binding of hypericin (Hyp) to the milk whey protein β-lactoglobulin (βLG), occurring at the two hydrophobic cavities located at the interface of the protein homodimer, can be exploited to confer water-solubility and biocompatibility to the photosensitizer. The introduction of a small amount of the organic cosolvent dimethyl sulfoxide (DMSO) leads to a remarkable improvement of the photophysical properties of the complex Hyp–βLG by increasing its fluorescence emission and singlet oxygen photosensitization quantum yields. Surprisingly, the ability of the complex to photo-inactivate bacteria of the strain Staphylococcus aureus is strongly reduced in the presence of DMSO, despite the higher yield of photosensitization. The reasons for this apparently contradictory behavior are investigated, providing new insights into the use of carrier systems for hydrophobic photosensitizers

    Cellular and Vascular effects of the photodynamic agent temocene are modulated by the delivery vehicle

    No full text
    The effects of the drug delivery system on the PDT activity, localization, and tumor accumulation of the novel photosensitizer temocene (the porphycene analogue of temoporfin or m-tetrahydroxyphenyl chlorin) were investigated against the P815 tumor, both in vitro and in DBA/2 tumor bearing mice. Temocene was administered either free (dissolved in PEG400/EtOH mixture), or encapsulated in Cremophor EL micelles or in DPPC/ DMPG liposomes, chosen as model delivery vehicles. The maximum cell accumulation and photodynamic activity in vitro was achieved with the free photosensitizer, while temocene in Cremophor micelles hardly entered the cells. Notwithstanding, the micellar formulation showed the best in vivo response when used in a vascular regimen (short drug light interval), whereas liposomes were found to be an efficient drug delivery system for a tumor cell targeting strategy (long drug-light interval). PEG/EtOH formulation was discarded for further in vivo experiments as it provoked lethal toxic effects caused by photosensitizer aggregation. These results demonstrate that drug delivery systems modulate the vascular and cellular outcomes of photodynamic treatments with temocene. © 2012 Elsevier B.V. All rights reserved

    Sequential uncaging with green light can be achieved by fine-tuning the structure of a dicyanocoumarin chromophore

    No full text
    We report the synthesis and photochemical properties of a series of dicyanocoumarinylmethyl (DEAdcCM)- and dicyanocoumarinylethyl (DEAdcCE)-based photocages of carboxylic acids and amines with absorption maximum around 500 nm. Photolysis studies with green light have demonstrated that the structure of the coumarin chromophore as well as the nature of the leaving group and the type of bond to be photocleaved (ester or carbamate) have a strong influence on the rate and efficiency of the uncaging process. These experimental observations were also supported by DFT calculations. Such differences in deprotection kinetics have been exploited to sequentially photolyze two dicyanocoumarin-caged model compounds (e.g. benzoic acid and ethylamine), and open the way to increasing the number of functional levels that can be addressed with light in a single system, particularly when combining dicyanocoumarin caging groups with other photocleavable protecting groups that remain intact under green light irradiation

    Redesigning the coumarin scaffold into small bright fluorophores with far-red to NIR emission and large Stokes' shifts useful for cell imaging

    No full text
    Among the palette of previously described fluorescent organic molecules, coumarins are ideal candidates for developing cellular and molecular imaging tools due to their high cell permeability and minimal perturbation of living systems. However, blue-to-cyan fluorescence emission is usually difficultin in vivo applications due to the inherent toxicity and poor tissue penetration of short visible light wavelengths. Here, we introduce a new family of coumarin-based fluorophores, nicknamed COUPY, with promising photophysical properties, including emission in the far-red/near-infrared (NIR) region, large Stokes shifts, high photostability, and excellent brightness. COUPY fluorophores were efficiently synthesized in only three linear synthetic steps from commercially available precursors, with the N-alkylation of a pyridine moiety being the key step at the end of the synthetic route, as it allows for the tuning of the photophysical properties of the resulting dye. Owing to their low molecular weights, COUPY dyes show excellent cell permeability and accumulate selectively in nucleoli and/or mitochondria of HeLa cells, as their far-red/NIR fluorescence emission is easily detected at a concentration as low as 0.5 ÎĽ M after an incubation of only 20 min. We anticipate that these coumarin scaffolds will open a way to the development of novel coumarin-based far-red to NIR emitting fluorophores with potential applications for organelle imaging and biomolecule labeling

    Optical control of pain in vivo with a photoactive mGlu5 receptor negative allosteric modulator

    No full text
    Light-operated drugs constitute a major target in drug discovery, since they may provide spatiotemporal resolution for the treatment of complex diseases (i.e. chronic pain). JF-NP-26 is an inactive photocaged derivative of the metabotropic glutamate type 5 (mGlu5) receptor negative allosteric modulator raseglurant. Violet light illumination of JF-NP-26 induces a photochemical reaction prompting the active-drug's release, which effectively controls mGlu5 receptor activity both in ectopic expressing systems and in striatal primary neurons. Systemic administration in mice followed by local light-emitting diode (LED)-based illumination, either of the thalamus or the peripheral tissues, induced JF-NP-26-mediated light-dependent analgesia both in neuropathic and in acute/tonic inflammatory pain models. These data offer the first example of optical control of analgesia in vivo using a photocaged mGlu5 receptor negative allosteric modulator. This approach shows potential for precisely targeting, in time and space, endogenous receptors, which may allow a better management of difficult-to-treat disorders

    Optical control of pain in vivo with a photoactive mGlu5 receptor negative allosteric modulator

    No full text
    Light-operated drugs constitute a major target in drug discovery, since they may provide spatiotemporal resolution for the treatment of complex diseases (i.e. chronic pain). JF-NP-26 is an inactive photocaged derivative of the metabotropic glutamate type 5 (mGlu5) receptor negative allosteric modulator raseglurant. Violet light illumination of JF-NP-26 induces a photochemical reaction prompting the active-drug's release, which effectively controls mGlu5 receptor activity both in ectopic expressing systems and in striatal primary neurons. Systemic administration in mice followed by local light-emitting diode (LED)-based illumination, either of the thalamus or the peripheral tissues, induced JF-NP-26-mediated light-dependent analgesia both in neuropathic and in acute/tonic inflammatory pain models. These data offer the first example of optical control of analgesia in vivo using a photocaged mGlu5 receptor negative allosteric modulator. This approach shows potential for precisely targeting, in time and space, endogenous receptors, which may allow a better management of difficult-to-treat disorders

    Synthesis, Spectroscopic and Photophysical Characterization and Photosensitizing Activity Toward Prokaryotic and Eukaryotic Cells of Porphyrin-Magainin and \u2013Buforin Conjugates

    No full text
    Cationic antimicrobial peptides (CAMPs) and photodynamic therapy (PDT) are attractive tools to combat infectious diseases and to stem further development of antibiotic resistance. In an attempt to increase the efficiency of bacteria inactivation, we conjugated a PDT photosensitizer, cationic or neutral porphyrin, to a CAMP, buforin or magainin. The neutral and hydrophobic porphyrin, which is not photoactive per se against Gram-negative bacteria, efficiently photoinactivated E. coli after conjugation to either buforin or magainin. Conjugation to magainin resulted in the considerable strengthening of the cationic and hydrophilic porphyrin\u2019s interaction with the bacterial cells as shown by the higher bacteria photoinactivation activity retained after bacterial suspension washings. The porphyrin-peptide conjugates also exhibited strong interaction capability as well as photoactivity toward eukaryotic cells, namely human fibroblasts. These findings suggest therefore that these CAMPs have the potential to carry drugs and other types of cargoes inside mammalian cells similarly to cell-penetrating peptides
    corecore