117 research outputs found

    Evolution of Hydromagnetic Disturbances in Low Ionized Cosmic Plasmas

    Get PDF
    We consider the propagation of hydromagnetic waves generated by a compact turbulent source in low ionized plasmas, applying the Lighthill theory. We assume the plasma to be isothermal, and adopt a uniform, stationary medium thread by ordered magnetic fields as an initial condition. Then, the distinct properties of the hydromagnetic waves originating from a source oscillating with a fixed frequency are studied in the linear regime. As is well known, in low ionized plasmas, the generated waves dissipate due to ion-neutral damping. In this paper, the dependence of the dissipation rate on the frequency of the oscillating source is investigated. The larger the frequency becomes, the more substantial is the wave dissipation. Implications of our results on the energy source in molecular clouds are also discussed. Interestingly, since the outflow lobes associated with young stellar objects act as compact turbulent sources, hydromagnetic waves are generated by them. From our order-estimations, about 70% of the energy of the outflow itself propagates as waves or turbulences, while the remaining 30% dissipates and heats the neutrals via ion-neutral damping. Then, we confirm that the outflows are significant energy sources in molecular clouds in the context of the Lighthill theory.Comment: 17 pages LaTeX, 3 PostScript figures, accepted, PASJ (Vol. 51, No. 3, pp. 337 - 344, 1999

    Opacity of fluffy dust aggregates

    Full text link
    Context. Dust grains coagulate to form dust aggregates in protoplanetary disks. Their porosity can be extremely high in the disks. Although disk emission may come from fluffy dust aggregates, the emission has been modeled with compact grains. Aims. We aim to reveal the mass opacity of fluffy aggregates from infrared to millimeter wavelengths with the filling factor ranging from 1 down to 10−410^{-4}. Methods. We use Mie calculations with an effective medium theory. The monomers are assumed to be 0.1 μm{\rm \mu m} sized grains, which is much shorter than the wavelengths that we focus on. Results. We find that the absorption mass opacity of fluffy aggregates are characterized by the product a×fa\times f, where aa is the dust radius and ff is the filling factor, except for the interference structure. The scattering mass opacity is also characterized by afaf at short wavelengths while it is higher in more fluffy aggregates at long wavelengths. We also derive the analytic formula of the mass opacity and find that it reproduces the Mie calculations. We also calculate the expected difference of the emission between compact and fluffy aggregates in protoplanetary disks with a simple dust growth and drift model. We find that compact grains and fluffy aggregates can be distinguished by the radial distribution of the opacity index β\beta. The previous observation of the radial distribution of β\beta is consistent with the fluffy case, but more observations are required to distinguish between fluffy or compact. In addition, we find that the scattered light would be another way to distinguish between compact grains and fluffy aggregates.Comment: 16 pages, 17 figures, published in A&A, 568, A4

    Analytical Formulas of Molecular Ion Abundances and N2H+ Ring in Protoplanetary Disks

    Get PDF
    We investigate the chemistry of ion molecules in protoplanetary disks, motivated by the detection of N2_2H+^+ ring around TW Hya. While the ring inner radius coincides with the CO snow line, it is not apparent why N2_2H+^+ is abundant outside the CO snow line in spite of the similar sublimation temperatures of CO and N2_2. Using the full gas-grain network model, we reproduced the N2_2H+^+ ring in a disk model with millimeter grains. The chemical conversion of CO and N2_2 to less volatile species (sink effect hereinafter) is found to affect the N2_2H+^+ distribution. Since the efficiency of the sink depends on various parameters such as activation barriers of grain surface reactions, which are not well constrained, we also constructed the no-sink model; the total (gas and ice) CO and N2_2 abundances are set constant, and their gaseous abundances are given by the balance between adsorption and desorption. Abundances of molecular ions in the no-sink model are calculated by analytical formulas, which are derived by analyzing the full-network model. The N2_2H+^+ ring is reproduced by the no-sink model, as well. The 2D (R-Z) distribution of N2_2H+^+, however, is different among the full-network model and no-sink model. The column density of N2_2H+^+ in the no-sink model depends sensitively on the desorption rate of CO and N2_2, and the flux of cosmic ray. We also found that N2_2H+^+ abundance can peak at the temperature slightly below the CO sublimation, even if the desorption energies of CO and N2_2 are the same.Comment: accepted to Ap
    • …
    corecore