27 research outputs found
Serendipitous Isolation of Non- Vibrio
We initially attempted to isolate a Vibrio cholerae O1 El Tor biotype that carries a novel variant of the cholera toxin gene (ctxAB) from environmental waters of Indonesia, where the seventh cholera pandemic by V. cholerae O1 El Tor biotype began. Nested PCR targeting the gene revealed that a total of eight strains were found to carry ctxAB. However, sequencing of the 16S rRNA genes of these isolates showed they were not V. cholerae but were either Klebsiella, Enterobacter, Pantoea, or Aeromonas. Subsequent nested PCR assays targeting all genes known to be encoded on the CTX phage (i.e., zot, ace, orfU, cep, rstB, rstA, and rstR) showed that one isolate belonged to the Enterobacter genus carried all the genes tested, while the other isolates lacked either 2, 3, or 5 of the genes. This evidence suggests that phages with ctxAB are genetically diverse and can infect not only V. cholerae and V. mimicus but also other species and genera in the form of a pseudolysogen
Investigation of a <i>Legionella pneumophila</i> Outbreak at a Bath Facility in Japan Using Whole-Genome Sequencing of Isolates from Clinical and Environmental Samples
Exposure to aerosols containing Legionella from artificially made water systems has been established as a primary cause of Legionnaires’ disease. In this study, we investigated an outbreak of L. pneumophila serogroup 1 sequence type 138 which occurred at a bath facility in 2022. The whole-genome sequencing of isolates revealed that the colonization of L. pneumophila at the bath facility had occurred before 2013, and the patients had been exposed to multiple genetic lineages of the strain. Our study demonstrates the importance of performing a careful comparative genetic analysis of clinical and environmental isolates from LD outbreaks in order to effectively investigate and prevent future LD outbreaks
Analysis of Genetic Characterization and Clonality of Legionella pneumophila Isolated from Cooling Towers in Japan
We investigated the genetic characteristics of 161 Legionella pneumophila strains isolated over a period of 10 years from cooling towers in Japan. Minimum spanning tree analysis based on the sequence-based typing (SBT) of them identified three clonal complexes (CCs); CC1 (105/161, 65.2%), CC2 (22 /161, 13.7%), and CC3 (20/161, 12.4%). CC1 was formed by serogroup (SG) 1 and SG7, whereas CC2 was mainly formed by SG1. All of the CC3 isolates except two strains were SG13. The major sequence types (STs) in CC1 and CC2 were ST1 (88/105, 83.8%) and ST154 (15/22, 68.2%), respectively. These STs are known as typical types of L. pneumophila SG1 in Japanese cooling tower. Additionally, we identified 15 strains of ST2603 as the major type in CC3. This ST has not been reported in Japanese cooling tower. Whole genome sequencing (WGS) analysis of the representative strains in the three CCs, which were isolated from various cooling towers over the 10 years, elucidated high clonal population of L. pneumophila in Japanese cooling tower. Moreover, it revealed that the strains of CC2 are phylogenetically distant compared to those of CC1 and CC3, and belonged to L. pneumophila subsp. fraseri
Current Taxonomical Situation of Streptococcus suis
Streptococcus suis, a major porcine pathogen and an important zoonotic agent, is considered to be composed of phenotypically and genetically diverse strains. However, recent studies reported several “S. suis-like strains” that were identified as S. suis by commonly used methods for the identification of this bacterium, but were regarded as distinct species from S. suis according to the standards of several taxonomic analyses. Furthermore, it has been suggested that some S. suis-like strains can be assigned to several novel species. In this review, we discuss the current taxonomical situation of S. suis with a focus on (1) the classification history of the taxon of S. suis; (2) S. suis-like strains revealed by taxonomic analyses; (3) methods for detecting and identifying this species, including a novel method that can distinguish S. suis isolates from S. suis-like strains; and (4) current topics on the reclassification of S. suis-like strains