21 research outputs found

    The cJUN NH2-terminal kinase pathway in mammary gland biology and carcinogenesis

    Get PDF
    The cJUN NH2-terminal kinase (JNK) pathway responds to environmental stresses and participates in many cellular processes, including cell death, survival, proliferation, migration, and genome maintenance. Importantly, genes that encode components of the JNK signaling pathway are frequently mutated in human breast cancer, but the functional consequence of these mutations in mammary carcinogenesis is unclear. Anoikis – suspension-induced apoptosis – has been implicated in oncogenic transformation and tumor cell metastasis. Anoikis also contributes to lumen formation during mammary gland development and epithelial cell clearance during post-lactational involution. JNK is known to contribute to certain forms of cell death, but the role of JNK during anoikis was unclear. I examined the requirement of JNK in anoikis and discovered that JNK promotes cell death by transcriptional and post-translational regulation of pro-apoptotic BH3-only proteins. This conclusion suggested that JNK signaling may contribute to mammary gland remodeling during involution. Indeed, JNK deficiency in mammary epithelial cells disrupted the remodeling program of gene expression and delayed involution. Finally, I sought to understand the importance of JNK in mammary carcinogenesis. I found that JNK loss in the mammary epithelium was sufficient for genomic instability and tumor formation. Moreover, JNK loss in a model of breast cancer resulted in significantly accelerated tumor development. Collectively, these studies advance our understanding of the JNK pathway and breast biology, and provide insight that informs the design of therapeutic approaches that target the JNK signal transduction pathway

    Role of the MAPK/cJun NH2-Terminal Kinase signaling pathway in starvation-induced autophagy

    Get PDF
    Autophagy is required for cellular homeostasis and can determine cell viability in response to stress. It is established that MTOR is a master regulator of starvation-induced macroautophagy/autophagy, but recent studies have also implicated an essential role for the MAPK8/cJun NH2-terminal kinase 1 signal transduction pathway. We found that MAPK8/JNK1 and MAPK9/JNK2 were not required for autophagy caused by starvation or MTOR inhibition in murine fibroblasts and epithelial cells. These data demonstrate that MAPK8/9 has no required role in starvation-induced autophagy. We conclude that the role of MAPK8/9 in autophagy may be context-dependent and more complex than previously considered

    The cJUN NH2-terminal kinase (JNK) pathway contributes to mouse mammary gland remodeling during involution

    Get PDF
    Involution returns the lactating mammary gland to a quiescent state after weaning. The mechanism of involution involves collapse of the mammary epithelial cell compartment. To test whether the cJUN NH2-terminal kinase (JNK) signal transduction pathway contributes to involution, we established mice with JNK deficiency in the mammary epithelium. We found that JNK is required for efficient involution. JNK deficiency did not alter the STAT3/5 or SMAD2/3 signaling pathways that have been previously implicated in this process. Nevertheless, JNK promotes the expression of genes that drive involution, including matrix metalloproteases, cathepsins, and BH3-only proteins. These data demonstrate that JNK has a key role in mammary gland involution post lactation

    The cJUN NH2-terminal kinase (JNK) signaling pathway promotes genome stability and prevents tumor initiation

    Get PDF
    Breast cancer is the most commonly diagnosed malignancy in women. Analysis of breast cancer genomic DNA indicates frequent loss-of-function mutations in components of the cJUN NH2-terminal kinase (JNK) signaling pathway. Since JNK signaling can promote cell proliferation by activating the AP1 transcription factor, this apparent association of reduced JNK signaling with tumor development was unexpected. We examined the effect of JNK deficiency in the murine breast epithelium. Loss of JNK signaling caused genomic instability and the development of breast cancer. Moreover, JNK deficiency caused widespread early neoplasia and rapid tumor formation in a murine model of breast cancer. This tumor suppressive function was not mediated by a role of JNK in the growth of established tumors, but by a requirement of JNK to prevent tumor initiation. Together, these data identify JNK pathway defects as \u27driver\u27 mutations that promote genome instability and tumor initiation

    JNK regulates compliance-induced adherens junctions formation in epithelial cells and tissues

    Get PDF
    We demonstrate that c-Jun N-terminal kinase (JNK) responds to substrate stiffness and regulates adherens junction (AJ) formation in epithelial cells in 2D cultures and in 3D tissues in vitro and in vivo. Rigid substrates led to JNK activation and AJ disassembly, whereas soft matrices suppressed JNK activity leading to AJ formation. Expression of constitutively active JNK (MKK7-JNK1) induced AJ dissolution even on soft substrates, whereas JNK knockdown (using shJNK) induced AJ formation even on hard substrates. In human epidermis, basal cells expressed phosphorylated JNK but lacked AJ, whereas suprabasal keratinocytes contained strong AJ but lacked phosphorylated JNK. AJ formation was significantly impaired even in the upper suprabasal layers of bioengineered epidermis when prepared with stiffer scaffold or keratinocytes expressing MKK7-JNK1. By contrast, shJNK1 or shJNK2 epidermis exhibited strong AJ even in the basal layer. The results with bioengineered epidermis were in full agreement with the epidermis of jnk1(-/-) or jnk2(-/-) mice. In conclusion, we propose that JNK mediates the effects of substrate stiffness on AJ formation in 2D and 3D contexts in vitro as well as in vivo

    Context-Dependent Transformation of Adult Pancreatic Cells by Oncogenic K-Ras

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies. To investigate the cellular origin(s) of this cancer, we determined the effect of PDAC-relevant gene mutations in distinct cell types of the adult pancreas. We show that a subpopulation of Pdx1-expressing cells is susceptible to oncogenic K-Ras-induced transformation without tissue injury, whereas insulin-expressing endocrine cells are completely refractory to transformation under these conditions. However, chronic pancreatic injury can alter their endocrine fate and allow them to serve as the cell of origin for exocrine neoplasia. These results suggest that one mechanism by which inflammation and/or tissue damage can promote neoplasia is by altering the fate of differentiated cells that are normally refractory to oncogenic stimulation.National Cancer Institute (U.S.) (Cancer Center Support (Core) Grant, P30 CA14051)National Institutes of Health (U.S.) (grant 1 PO1 CA117969 01)American Cancer Society (ACS Research Professor)Anna Fuller FundMassachusetts Institute of Technology (Daniel K. Ludwig Foundation Cancer Research Professor)Howard Hughes Medical Institute (Investigator

    TNFalpha-Mediated Cytotoxic Responses to IAP Inhibition Are Limited by the p38alpha MAPK Pathway

    No full text
    Smac mimetics (SMs), a class of drugs that can promote tumor cell death, represent a potential therapeutic strategy for the treatment of cancer. In this issue of Cancer Cell, Lalaoui et al. (2016) report that SM efficacy can be potently increased by inhibition of the p38alpha MAPK/MK2 signaling pathway

    JNK Promotes Epithelial Cell Anoikis by Transcriptional and Post-translational Regulation of BH3-Only Proteins

    Get PDF
    Summary: Developmental morphogenesis, tissue injury, and oncogenic transformation can cause the detachment of epithelial cells. These cells are eliminated by a specialized form of apoptosis (anoikis). While the processes that contribute to this form of cell death have been studied, the underlying mechanisms remain unclear. Here, we tested the role of the cJUN NH2-terminal kinase (JNK) signaling pathway using murine models with compound JNK deficiency in mammary and kidney epithelial cells. These studies demonstrated that JNK is required for efficient anoikis in vitro and in vivo. Moreover, JNK-promoted anoikis required pro-apoptotic members of the BCL2 family of proteins. We show that JNK acts through a BAK/BAX-dependent apoptotic pathway by increasing BIM expression and phosphorylating BMF, leading to death of detached epithelial cells. : Developmental morphogenesis, tissue injury, and oncogenic transformation can cause epithelial cell detachment. These cells are eliminated by a specialized form of apoptosis termed anoikis. Girnius and Davis show that anoikis is mediated by the cJUN NH2-terminal kinase (JNK), which increases BIM expression and phosphorylates BMF to engage BAK/BAX-dependent apoptosis. Keywords: apoptosis, anoikis, epithelial cell, mammary gland, JNK, BAX, BAK, BH3-only protein, BIM, BM

    Mechanism of early dissemination and metastasis in Her2+ mammary cancer

    No full text
    Metastasis is the leading cause of cancer-related deaths; metastatic lesions develop from disseminated cancer cells (DCCs) that can remain dormant. Metastasis-initiating cells are thought to originate from a subpopulation present in progressed, invasive tumours. However, DCCs detected in patients before the manifestation of breast-cancer metastasis contain fewer genetic abnormalities than primary tumours or than DCCs from patients with metastases. These findings, and those in pancreatic cancer and melanoma models, indicate that dissemination might occur during the early stages of tumour evolution. However, the mechanisms that might allow early disseminated cancer cells (eDCCs) to complete all steps of metastasis are unknown. Here we show that, in early lesions in mice and before any apparent primary tumour masses are detected, there is a sub-population of Her2+p-p38lop-Atf2loTwist1hiE-cadlo early cancer cells that is invasive and can spread to target organs. Intra-vital imaging and organoid studies of early lesions showed that Her2+ eDCC precursors invaded locally, intravasated and lodged in target organs. Her2+ eDCCs activated a Wnt-dependent epithelial-mesenchymal transition (EMT)-like dissemination program but without complete loss of the epithelial phenotype, which was reversed by Her2 or Wnt inhibition. Notably, although the majority of eDCCs were Twist1hiE-cadlo and dormant, they eventually initiated metastasis. Our work identifies a mechanism for early dissemination in which Her2 aberrantly activates a program similar to mammary ductal branching that generates eDCCs that are capable of forming metastasis after a dormancy phase
    corecore