10 research outputs found

    Gene-Specific Nonsense-Mediated mRNA Decay Targeting for Cystic Fibrosis Therapy

    Get PDF
    Low CFTR mRNA expression due to nonsense-mediated mRNA decay (NMD) is a major hurdle in developing a therapy for cystic fibrosis (CF) caused by the W1282X mutation in the CFTR gene. CFTR-W1282X truncated protein retains partial function, so increasing its levels by inhibiting NMD of its mRNA will likely be beneficial. Because NMD regulates the normal expression of many genes, gene-specific stabilization of CFTR-W1282X mRNA expression is more desirable than general NMD inhibition. Synthetic antisense oligonucleotides (ASOs) designed to prevent binding of exon junction complexes (EJC) downstream of premature termination codons (PTCs) attenuate NMD in a gene-specific manner. We developed a cocktail of three ASOs that specifically increases the expression of CFTR W1282X mRNA and CFTR protein in ASO-transfected human bronchial epithelial cells. This treatment increased the CFTR-mediated chloride current. These results set the stage for clinical development of an allele-specific therapy for CF caused by the W1282X mutation

    Gene-specific nonsense-mediated mRNA decay targeting for cystic fibrosis therapy

    Get PDF
    Low CFTR mRNA expression due to nonsense-mediated mRNA decay (NMD) is a major hurdle in developing a therapy for cystic fibrosis (CF) caused by the W1282X mutation in the CFTR gene. CFTR-W1282X truncated protein retains partial function, so increasing its levels by inhibiting NMD of its mRNA will likely be beneficial. Because NMD regulates the normal expression of many genes, gene-specific stabilization of CFTR-W1282X mRNA expression is more desirable than general NMD inhibition. Synthetic antisense oligonucleotides (ASOs) designed to prevent binding of exon junction complexes (EJC) downstream of premature termination codons (PTCs) attenuate NMD in a gene-specific manner. We describe cocktails of three ASOs that specifically increase the expression of CFTR-W1282X mRNA and CFTR protein upon delivery into human bronchial epithelial cells. This treatment increases the CFTR-mediated chloride current. These results set the stage for clinical development of an allele-specific therapy for CF caused by the W1282X mutation

    Mechanism of Nonsense-Mediated mRNA Decay Stimulation by Splicing Factor SRSF1

    No full text
    Summary The splicing factor SRSF1 promotes nonsense-mediated mRNA decay (NMD), a quality control mechanism that degrades mRNAs with premature termination codons (PTCs). Here we show that transcript-bound SRSF1 increases the binding of NMD factor UPF1 to mRNAs while in, or associated with, the nucleus, bypassing UPF2 recruitment and promoting NMD. SRSF1 promotes NMD when positioned downstream of a PTC, which resembles the mode of action of exon junction complex (EJC) and NMD factors. Moreover, splicing and/or EJC deposition increase the effect of SRSF1 on NMD. Lastly, SRSF1 enhances NMD of PTC-containing endogenous transcripts that result from various events. Our findings reveal an alternative mechanism for UPF1 recruitment, uncovering an additional connection between splicing and NMD. SRSF1’s role in the mRNA’s journey from splicing to decay has broad implications for gene expression regulation and genetic diseases

    Counteracting chromatin effects of a splicing-correcting antisense oligonucleotide improves its therapeutic efficacy in spinal muscular atrophy

    No full text
    Spinal muscular atrophy (SMA) is a motor-neuron disease caused by mutations of the SMN1 gene. The human paralog SMN2, whose exon 7 (E7) is predominantly skipped, cannot compensate for the lack of SMN1. Nusinersen is an antisense oligonucleotide (ASO) that upregulates E7 inclusion and SMN protein levels by displacing the splicing repressors hnRNPA1/A2 from their target site in intron 7. We show that by promoting transcriptional elongation, the histone deacetylase inhibitor VPA cooperates with a nusinersen-like ASO to promote E7 inclusion. Surprisingly, the ASO promotes the deployment of the silencing histone mark H3K9me2 on the SMN2 gene, creating a roadblock to RNA polymerase II elongation that inhibits E7 inclusion. By removing the roadblock, VPA counteracts the chromatin effects of the ASO, resulting in higher E7 inclusion without large pleiotropic effects. Combined administration of the nusinersen-like ASO and VPA in SMA mice strongly synergizes SMN expression, growth, survival, and neuromuscular function

    Expanding the reproductive organ phenotype of CHD7-spectrum disorder

    No full text
    CHD7 disorder is a multiple congenital anomaly syndrome with a highly variable phenotypic spectrum, and includes CHARGE syndrome. Internal and external genital phenotypes frequently seen in CHD7 disorder include cryptorchidism and micropenis in males, and vaginal hypoplasia in females, both thought to be secondary to hypogonadotropic hypogonadism. Here, we report 14 deeply phenotyped individuals with known CHD7 variants (9 pathogenic/likely pathogenic and 5 VOUS) and a range of reproductive and endocrine phenotypes. Reproductive organ anomalies were observed in 8 of 14 individuals and were more commonly noted in males (7/7), most of whom presented with micropenis and/or cryptorchidism. Kallmann syndrome was commonly observed among adolescents and adults with CHD7 variants. Remarkably, one 46,XY individual presented with ambiguous genitalia, cryptorchidism with MĂŒllerian structures including uterus, vagina and fallopian tubes, and one 46,XX female patient presented with absent vagina, uterus and ovaries. These cases expand the genital and reproductive phenotype of CHD7 disorder to include two individuals with genital/gonadal atypia (ambiguous genitalia), and one with MĂŒllerian aplasia

    Pathological impact of SMN2 mis-splicing in adult SMA mice

    Get PDF
    Loss-of-function mutations in SMN1 cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. The related SMN2 gene expresses suboptimal levels of functional SMN protein, due to a splicing defect. Many SMA patients reach adulthood, and there is also adult-onset (type IV) SMA. There is currently no animal model for adult-onset SMA, and the tissue-specific pathogenesis of post-developmental SMN deficiency remains elusive. Here, we use an antisense oligonucleotide (ASO) to exacerbate SMN2 mis-splicing. Intracerebroventricular ASO injection in adult SMN2-transgenic mice phenocopies key aspects of adult-onset SMA, including delayed-onset motor dysfunction and relevant histopathological features. SMN2 mis-splicing increases during late-stage disease, likely accelerating disease progression. Systemic ASO injection in adult mice causes peripheral SMN2 mis-splicing and affects prognosis, eliciting marked liver and heart pathologies, with decreased IGF1 levels. ASO dose-response and time-course studies suggest that only moderate SMN levels are required in the adult central nervous system, and treatment with a splicing-correcting ASO shows a broad therapeutic time window. We describe distinctive pathological features of adult-onset and early-onset SMA

    Antisense oligonucleotide-directed inhibition of nonsense-mediated mRNA decay

    No full text
    Nonsense-mediated mRNA decay (NMD) is a cellular quality-control mechanism that is thought to exacerbate the phenotype of certain pathogenic nonsense mutations by preventing the expression of semi-functional proteins. NMD also limits the efficacy of read-through compound (RTC)-based therapies. Here, we report a gene-specific method of NMD inhibition using antisense oligonucleotides (ASOs) and combine this approach with an RTC to effectively restore the expression of full-length protein from a nonsense-mutant allele
    corecore