347 research outputs found

    Large Thermoelectric Power Factor in TiS2 Crystal with Nearly Stoichiometric Composition

    Full text link
    A TiS2_{2} crystal with a layered structure was found to have a large thermoelectric power factor.The in-plane power factor S2/ρS^{2}/ \rho at 300 K is 37.1~μ\muW/K2^{2}cm with resistivity (ρ\rho) of 1.7 mΩ\Omegacm and thermopower (SS) of -251~μ\muV/K, and this value is comparable to that of the best thermoelectric material, Bi2_{2}Te3_{3} alloy. The electrical resistivity shows both metallic and highly anisotropic behaviors, suggesting that the electronic structure of this TiS2_{2} crystal has a quasi-two-dimensional nature. The large thermoelectric response can be ascribed to the large density of state just above the Fermi energy and inter-valley scattering. In spite of the large power factor, the figure of merit, ZTZT of TiS2_{2} is 0.16 at 300 K, because of relatively large thermal conductivity, 68~mW/Kcm. However, most of this value comes from reducible lattice contribution. Thus, ZTZT can be improved by reducing lattice thermal conductivity, e.g., by introducing a rattling unit into the inter-layer sites.Comment: 11 pages, 4 figures, to be published in Physical Review

    Thermoelectricity in Nanowires: A Generic Model

    Full text link
    By employing a Boltzmann transport equation and using an energy and size dependent relaxation time (τ\tau) approximation (RTA), we evaluate self-consistently the thermoelectric figure-of-merit ZTZT of a quantum wire with rectangular cross-section. The inferred ZTZT shows abrupt enhancement in comparison to its counterparts in bulk systems. Still, the estimated ZTZT for the representative Bi2_2Te3_3 nanowires and its dependence on wire parameters deviate considerably from those predicted by the existing RTA models with a constant τ\tau. In addition, we address contribution of the higher energy subbands to the transport phenomena, the effect of chemical potential tuning on ZTZT, and correlation of ZTZT with quantum size effects (QSEs). The obtained results are of general validity for a wide class of systems and may prove useful in the ongoing development of the modern thermoelectric applications.Comment: 15 pages, 6 figures; Dedicated to the memory of Amirkhan Qezell

    Possible mechanism for achieving glass-like thermal conductivities in crystals with off-center atoms

    Full text link
    In the filled Ga/Ge clathrate, Eu and Sr are off-center in site 2 but Ba is on-center. All three filler atoms (Ba,Eu,Sr) have low temperature Einstein modes; yet only for the Eu and Sr systems is there a large dip in the thermal conductivity, attributed to the Einstein modes. No dip is observed for Ba. Here we argue that it is the off-center displacement that is crucial for understanding this unexplained difference in behavior. It enhances the coupling between the "rattler" motion and the lattice phonons for the Eu and Sr systems, and turns on/off another scattering mechanism (for 1K < T < 20K) produced by the presence/absence of off-center sites. The random occupation of different off-center sites produces a high density of symmetry-breaking defects which scatters phonons. It may also be important for improving our understanding of other glassy systems.Comment: 4 pages, 1 figure (2 parts) -- v2: intro broadened; strengthened arguments regarding need for additional phonon scattering mechanis

    Anomalous infrared spectra of hybridized phonons in type-I clathrate Ba8_8Ga16_{16}Ge30_{30}

    Full text link
    The optical conductivity spectra of the rattling phonons in the clathrate Ba8_8Ga16_{16}Ge30_{30} are investigated in detail by use of the terahertz time-domain spectroscopy. The experiment has revealed that the lowest-lying vibrational mode of a Ba(2)2+^{2+} ion consists of a sharp Lorentzian peak at 1.2 THz superimposed on a broad tail weighted in the lower frequency regime around 1.0 THz. With decreasing temperature, an unexpected linewidth broadening of the phonon peak is observed, together with monotonic softening of the phonon peak and the enhancement of the tail structure. These observed anomalies are discussed in terms of impurity scattering effects on the hybridized phonon system of rattling and acoustic phonons.Comment: Submitted to JPS

    Resonant States in the Electronic Structure of the High Performance Thermoelectrics AgPbmSbTe_{m}SbTe_{2+m}$ ; The Role of Ag-Sb Microstructures

    Full text link
    Ab initio electronic structure calculations based on gradient corrected density functional theory were performed on a class of novel quaternary compounds AgPbmSbTe_{m}SbTe_{2+m}$, which were found to be excellent high temperature thermoelctrics with large figure of merit ZT ~2.2 at 800K. We find that resonant states appear near the top of the valence and bottom of the conduction bands of bulk PbTe when Ag and Sb replace Pb. These states can be understood in terms of modified Te-Ag(Sb) bonds. Electronic structure near the gap depends sensitively on the microstructural arrangements of Ag-Sb atoms, suggesting that large ZT values may originate from the nature of these ordering arrangements.Comment: Accepted in Physical Review Letter

    Cage-size control of guest vibration and thermal conductivity in Sr8Ga16Si30-xGex

    Full text link
    We present a systematic study of thermal conductivity, specific heat, electrical resistivity, thermopower and x-ray diffraction measurements performed on single-crystalline samples of the pseudoquaternary type-I clathrate system Sr8Ga16Si30-xGex, in the full range of 0 < x < 30. All the samples show metallic behavior with n-type majority carriers. However, the thermal conductivity and specific heat strongly depend on x. Upon increasing x from 0 to 30, the lattice parameter increases by 3%, from 10.446 to 10.726 A, and the localized vibrational energies of the Sr guest ions in the tetrakaidekahedron (dodecahedron) cages decrease from 59 (120) K to 35 (90) K. Furthermore, the lattice thermal conductivity at low temperatures is largely suppressed. In fact, a crystalline peak found at 15 K for x = 0 gradually decreases and disappears for x > 20, evolving into the anomalous glass-like behavior observed for x = 30. It is found that the increase of the free space for the Sr guest motion directly correlates with a continuous transition from on-center harmonic vibration to off-center anharmonic vibration, with consequent increase in the coupling strength between the guest's low-energy modes and the cage's acoustic phonon modes.Comment: 7 pages, 7 figures, submitted to PR

    Thermal and electrical transport in the spin density wave antiferromagnet CaFe4_{4}As3_{3}

    Full text link
    We present here measurements of the thermopower, thermal conductivity, and electrical resistivity of the newly reported compound CaFe4As3. Evidence is presented from specific heat and electrical resistivity measurements that a substantial fraction of the Fermi surface survives the onset of spin density wave (SDW) order at the Neel temperature TN=88 K, and its subsequent commensurate lockin transition at T2=26.4 K. The specific heat below T2 consists of a normal metallic component from the ungapped parts of the Fermi surface, and a Bardeen-Cooper- Schrieffer (BCS) component that represents the SDW gapping of the Fermi surface. A large Kadowaki-Woods ratio is found at low temperatures, showing that the ground state of CaFe4As3 is a strongly interacting Fermi liquid. The thermal conductivity of CaFe4As3 is an order of magnitude smaller than those of conventional metals at all temperatures, due to a strong phonon scattering. The thermoelectric power displays a sign change from positive to negative indicating that a partial gap forms at the Fermi level with the onset of commensurate spin density wave order at T2=26.4 K. The small value of the thermopower and the enhancements of the resistivity due to gap formation and strong quasiparticle interactions offset the low value of the thermal conductivity, yielding only a modest value for the thermoelectric figure of merit Z < 5x10^-6 1/K in CaFe4As3. The results of ab initio electronic structure calculations are reported, confirming that the sign change in the thermopower at T2 is reflected by a sign change in the slope of the density of states at the Fermi level. Values for the quasiparticle renormalization are derived from measurements of the specific heat and thermopower, indicating that as T->0, CaFe4As3 is among the most strongly correlated of the known Fe-based pnictide and chalcogenide systems.Comment: 8 pages with 5 figure

    Four-well tunneling states and elastic response of clathrates

    Full text link
    We present resonant ultrasound elastic constant measurements of the clathrate compounds Eu8Ga16Ge30 and Sr8Ga16Ge30. The elastic response of the Eu clathrate provides clear evidence for the existence of a new type of four-well tunneling states, described by two nearly degenerate four level systems (FLS). The FLS's are closely linked with the fourfold split positions of Eu known from neutron diffraction density profiles. Using a realistic potential we estimate the tunneling frequencies and show that the energy gap between the two FLS's is of the same order as the Einstein oscillator frequency. This explains why the observed harmonic oscillator type specific heat is not modified by tunneling states. In addition the quadrupolar interaction of FLS's with elastic strains explains the pronounced depression observed in elastic constant measurements. In the case of the Sr clathrate, we show that the shallow dip in the elastic constant c44 is explained using the same type of quadrupolar interaction with a soft Einstein mode instead of a FLS.Comment: 4 pages, 4 figures; accepted for publication in Physical Review Letter

    Photography, Politics and Childhood: Exploring children’s multimodal relations with the public sphere

    Get PDF
    In qualitative research with children visually oriented and multimodal approaches are identified in the literature as more appropriate for approaching children’s meanings and feelings often deemed to lie beyond the realm of language. In our own research, a comparative ethnography which enquired into the relationships between childhood and public life, with six-to-eight year olds in three cities (Athens, Hyderabad and London), we have reflexively experimented with the employment and remixing of methodologies which would allow us to explore such relationships. In the process of our research, incorporating different visual and ethnographic methods, we have developed a data collection and production process, an adaptation of the photo-story, which allows for a multimodal, processual and reflective enquiry into children’s relationships of concern and politics of care. We review the central visual methods in research with children, we then proceed to provide a documentation of the method, its development and its rationale. Consequently, we provide some examples of the photostory method’s implementation in the Connectors Study together with a discussion of the production processes of the photo-stories themselves and our readings of them. We conclude with a section with reflections on the method, which, we argue provides a departure point from which we may rethink the political in childhood, as well as the ways in which photography is employed as a research method in the social sciences
    corecore