7,977 research outputs found

    Photometric identification of the periods of the first candidate extragalactic magnetic massive stars

    Full text link
    Galactic stars belonging to the Of?p category are all strongly magnetic objects exhibiting rotationally modulated spectral and photometric changes on timescales of weeks to years. Five candidate Of?p stars in the Magellanic Clouds have been discovered, notably in the context of ongoing surveys of their massive star populations. Here we describe an investigation of their photometric behaviour, revealing significant variability in all studied objects on timescales of one week to more than four years, including clearly periodic variations for three of them. Their spectral characteristics along with these photometric changes provide further support for the hypothesis that these are strongly magnetized O stars, analogous to the Of?p stars in the Galaxy.Comment: 9pages, accepted by A&

    A note on behaviour at an isotropic singularity

    Get PDF
    The behaviour of Jacobi fields along a time-like geodesic running into an isotropic singularity is studied. It is shown that the Jacobi fields are crushed to zero length at a rate which is the same in every direction orthogonal to the geodesic. We show by means of a counter-example that this crushing effect depends crucially on a technicality of the definition of isotropic singularities, and not just on the uniform degeneracy of the metric at the singularity.Comment: 13 pp. plain latex. To appear in Classical and Quantum Gravit

    Chasing the second gamma-ray bright isolated neutron star: 3EG J1835+5918/RX J1836.2+5925

    Get PDF
    The EGRET telescope aboard NASAs Compton GRO has repeatedly detected 3EG J1835+5918, a bright and steady source of high-energy gamma-ray emission with no identification suggested until recently. The long absence of any likely counterpart for a bright gamma-ray source located 25 degrees off the Galactic plane initiated several attempts of deep observations at other wavelengths. We report on counterparts in X-rays on a basis of a 60 ksec ROSAT HRI image. In order to conclude on the plausibility of the X-ray counterparts, we reanalyzed data from EGRET at energies above 100 MeV and above 1 GeV, including data up to CGRO observation cycle 7. The gamma-ray source location represents the latest and probably the final positional assessment based on EGRET data. The X-ray counterparts were studied during follow-up optical identification campaigns, leaving only one object to be likely associated with the gamma-ray source 3EG J1835+5918. This object, RX J1836.2+5925, has the characteristics of an isolated neutron star and possibly of a radio-quiet pulsar.Comment: 5 pages, 3 figures. To appear in the Proceedings of the 270. WE-Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants, Jan. 21-25, 2002, Physikzentrum Bad Honnef, eds W. Becker, H. Lesch & J. Truemper. Proceedings are available as MPE-Report 27

    A CRISPR-Cas9 sex-ratio distortion system for genetic control.

    Get PDF
    Genetic control aims to reduce the ability of insect pest populations to cause harm via the release of modified insects. One strategy is to bias the reproductive sex ratio towards males so that a population decreases in size or is eliminated altogether due to a lack of females. We have shown previously that sex ratio distortion can be generated synthetically in the main human malaria vector Anopheles gambiae, by selectively destroying the X-chromosome during spermatogenesis, through the activity of a naturally-occurring endonuclease that targets a repetitive rDNA sequence highly-conserved in a wide range of organisms. Here we describe a CRISPR-Cas9 sex distortion system that targets ribosomal sequences restricted to the member species of the Anopheles gambiae complex. Expression of Cas9 during spermatogenesis resulted in RNA-guided shredding of the X-chromosome during male meiosis and produced extreme male bias among progeny in the absence of any significant reduction in fertility. The flexibility of CRISPR-Cas9 combined with the availability of genomic data for a range of insects renders this strategy broadly applicable for the species-specific control of any pest or vector species with an XY sex-determination system by targeting sequences exclusive to the female sex chromosome

    On isotropic cylindrically symmetric stellar models

    Full text link
    We attempt to match the most general cylindrically symmetric vacuum space-time with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model.Comment: 13 pages. To appear in Classical and Quantum Gravit

    Common and specific genomic sequences of avian and human extraintestinal pathogenic Escherichia coli as determined by genomic subtractive hybridization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Suppression subtractive hybridization (SSH) strategy was used with extraintestinal pathogenic <it>Escherichia coli </it>(EXPEC) that cause avian colibacillosis (avian pathogenic <it>E. coli </it>or APEC) and human urinary tract infections (uropathogenic <it>E. coli </it>or UPEC) to determine if they possessed genes that were host and/or niche specific. Both APEC and UPEC isolates were used as tester and driver strains in 4 different SSHs in order to obtain APEC- and UPEC-specific subtraction fragments (SFs).</p> <p>Results</p> <p>These procedures yielded a total of 136 tester-specific SFs of which 85 were APEC-derived and 51 were UPEC-derived. Most of the APEC-derived SFs were associated with plasmids; whereas, the majority of UPEC-derived sequences matched to the bacterial chromosome. We further determined the distribution of these tester-derived sequences in a collection of UPEC and APEC isolates using polymerase chain reaction techniques. Plasmid-borne, APEC-derived sequences (<it>tsh</it>, <it>cva</it>B, <it>tra</it>R, <it>tra</it>C and <it>sop</it>B) were predominantly present in APEC, as compared to UPEC. Of the UPEC-derived SFs, those encoding hemolysin D and F1C major and minor fimbrial subunits were present only in UPEC. However, two UPEC-derived SFs that showed strong similarity to the uropathgenic-specific protein gene (<it>usp</it>) occurred in APEC, demonstrating that <it>usp </it>is not specific to UPEC.</p> <p>Conclusion</p> <p>This study provides evidence of the genetic variability of ExPEC as well as genomic similarities between UPEC and APEC; it did not identify any single marker that would dictate host and/or niche specificity in APEC or UPEC. However, further studies on the genes that encode putative or hypothetical proteins might offer important insight into the pathogenesis of disease, as caused by these two ExPEC.</p

    Mutational and transcriptional analyses of an avian pathogenic Escherichia coli ColV plasmid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previously we described a 184-kb ColV plasmid, pAPEC-O2-ColV, that contributed to the ability of an <it>E. coli </it>to kill avian embryos, grow in human urine, and colonize the murine kidney. Here, the roles of several genes encoded by this plasmid in virulence were assessed using mutational and transcriptional analyses.</p> <p>Methods</p> <p>Genes chosen for deletion were <it>iss</it>, <it>tsh</it>, <it>iutA</it>, <it>iroN</it>, <it>sitA</it>, and <it>cvaB</it>. In addition, a 35-kb region of the plasmid, containing <it>iss</it>, <it>tsh</it>, and the ColV and <it>iro </it>operons, along with a 15-kb region containing both the aerobactin and <it>sit </it>operons, were deleted. Mutants were compared to the wild-type (APEC O2) for lethality to chick embryos and growth in human urine. Expression of the targeted genes was also assessed under these same conditions using RT-PCR</p> <p>Results</p> <p>No significant differences between the mutants and the wild-type in these phenotypic traits were detected. However, genes encoding known or predicted iron transport systems were up-regulated during growth in human urine, as compared to growth in LB broth, while <it>iss</it>, <it>hlyF</it>, and <it>iroN </it>were strongly up-regulated in chick embryos.</p> <p>Conclusion</p> <p>While no difference was observed between the mutant strains and their wild-type parent in the phenotypic traits assayed, we reasoned that some compensatory virulence mechanism, insensitivity of the virulence assays, or other factor could have obscured changes in the virulence of the mutants. Indeed we found several of these genes to be up-regulated in human urine and/or in the chick embryo, suggesting that certain genes linked to ColV plasmids are involved in the establishment of avian extraintestinal infection.</p

    Solving the time-dependent Schr\"odinger equation with absorbing boundary conditions and source terms in Mathematica 6.0

    Full text link
    In recent decades a lot of research has been done on the numerical solution of the time-dependent Schr\"odinger equation. On the one hand, some of the proposed numerical methods do not need any kind of matrix inversion, but source terms cannot be easily implemented into this schemes; on the other, some methods involving matrix inversion can implement source terms in a natural way, but are not easy to implement into some computational software programs widely used by non-experts in programming (e.g. Mathematica). We present a simple method to solve the time-dependent Schr\"odinger equation by using a standard Crank-Nicholson method together with a Cayley's form for the finite-difference representation of evolution operator. Here, such standard numerical scheme has been simplified by inverting analytically the matrix of the evolution operator in position representation. The analytical inversion of the N x N matrix let us easily and fully implement the numerical method, with or without source terms, into Mathematica or even into any numerical computing language or computational software used for scientific computing.Comment: 15 pages, 7 figure
    corecore