1,046 research outputs found

    Agro-terrorism and the Grain Handling Systems in Canada and the United States

    Get PDF
    The grain handling sector in Canada and the United States is vital to agriculture and trade. In a typical year on the Canadian prairies, about 140,000 producers deliver some 20 to 30 mmt of grain for export to primary elevators. In the United States, about 2.1 million producers deliver about 300 mmt of grain to primary elevators. Canadian grain is moved to export position using more than 400,000 hopper cars and marine containers, where about 1,200 ships per year are loaded. In the United States, about 1.08 million rail carloads of grain are originated per year, and about 23 mmt of grain are shipped on barges per year. These U.S. figures are in addition to trucks, which, more so than in Canada, are also used to deliver grain to primary processors and to terminal and export markets. The volume of grain trade gives rise to concern about risks of terrorism in the sector.(1) From a security perspective, the grain, pulse and oilseed supply chain is noteworthy because much of it is characterized by relatively long-term, insecure, bulky storage (particularly on farms) along with numerous modal and inter-modal product transfers. These factors suggest there are many places where chemical or biological contaminants could be introduced into this supply chain. From the perspective of the United States, security throughout the Canadian system as well as the U.S. system is a concern, since cross-border traffic in these products is significant, with an average of about six million tonnes of grain products alone imported into the U.S. each year (USDA-FAS, 2003). Numerous interventions to enhance food safety and mitigate the risk of terrorism have been adopted or are in the process of being developed. Some of these are private initiatives and voluntary, as a component of firm-level security processes. Others are being adopted in response to legislated initiatives. The stakes are large, and there are likely to be substantial differences in costs and effectiveness of different approaches.Agricultural and Food Policy, Food Consumption/Nutrition/Food Safety,

    Subsidization of the Biofuel Industry: Security vs. Clean Air?

    Get PDF
    Replaced with revised version of paper 07/11/06.Resource /Energy Economics and Policy,

    Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation.

    Get PDF
    The prion diseases occur following the conversion of the cellular prion protein (PrP(C)) into disease-related isoforms (PrP(Sc)). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrP(C) in prion formation was examined using a cell painting technique. PrP(Sc) formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrP(C). In contrast, PrP(C) containing a GPI anchor from which the sialic acid had been removed (desialylated PrP(C)) was not converted to PrP(Sc). Furthermore, the presence of desialylated PrP(C) inhibited the production of PrP(Sc) within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrP(C) contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrP(C). Desialylated PrP(C) was less sensitive to cholesterol depletion than PrP(C) and was not released from cells by treatment with glimepiride. The presence of desialylated PrP(C) in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrP(C) modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrP(Sc) formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases.This work was supported by a grant from the European Commission FP6 “Neuroprion” – Network of Excellence. We also thank Dr Mourad Tayebi for supplying mAbs ICSM18 and ICSM35.This is the author accepted manuscript. The final version is available from ASBMB via http://dx.doi.org/10.1074/jbc.M115.67239

    Reactivity of metal oxide nanocluster modified rutile and anatase TiO2: Oxygen vacancy formation and CO2 interaction

    Get PDF
    The reduction of CO2 to fuels is an active research topic with much interest in using solar radiation and photocatalysts to transform CO2 into higher value chemicals. However, to date there are no photocatalysts known that can use solar radiation to efficiently reduce CO2. One particularly difficult problem is activating CO2 due to its high stability. In this paper we use density functional theory simulations to study novel surface modified TiO2 composites, based on modifying rutile and anatase TiO2 with molecular-sized metal oxide nanoclusters of SnO, ZrO2 and CeO2 and the interaction between CO2 and nanocluster-modified TiO2. We show that reduction of the supported nanocluster is favourable which then provides reduced cations and sites for CO2 adsorption. The atomic structures and energies of different adsorption configurations of CO2 on the reduced modified TiO2 composites are studied. Generally on reduced SnO and CeO2 nanoclusters, the interaction of CO2 is weak producing adsorbed carbonates. On reduced ZrO2, we find a stronger interaction with CO2 and carbonate formation. The role of the energies of oxygen vacancy formation in CO2 adsorption is important because if reduction is too favourable, the interaction with CO2 is not so favourable. We do find an adsorption configuration of CO2 at reduced CeO2 where a CO bond breaks, releasing CO and filling the oxygen vacancy site in the supported ceria nanocluster. These initial results for the interaction of CO2 at surface modified TiO2 provide important insights for future work on CO2 reduction using novel materials

    Capturing Life: Zoological Gardens and the Emergence of Cinema

    Get PDF
    Zoological Gardens contributed the representation of animal life unfolding in time to the study of the natural world in the nineteenth century. The emergence of cinema made a remarkably similar contribution to human representation; much of the Lumiere and Edison catalogs of early cinema, often called actualités, featured seemingly unstaged durations of human and animal life. Carefully framed, both the zoo and the cinema privileged the any-instant-whatever even as they attempted to corral it into archivable human signification. Moreover, just as the desire to see animals better guides the arrival of zoological gardens in the west, so too is the animal deeply involved in the arrival of the cinematic apparatus. Focusing on nineteenth century zoos, their evolution and cultural contexts, protocinematic technologies, and finally the appearance of the cinematic apparatus, Capturing Life centers its comparison of zoos and cinema on their involvement of animals and their offer to reinvigorate human representation with animal life

    Does the tail wag the dog? How the structure of a glycosylphosphatidylinositol anchor affects prion formation

    Get PDF
    There is increasing interest in the role of the glycosylphosphatidylinositol (GPI) anchor attached to the cellular prion protein (PrP(C)). Since GPI anchors can alter protein targeting, trafficking and cell signaling, our recent study examined how the structure of the GPI anchor affected prion formation. PrP(C) containing a GPI anchor from which the sialic acid had been removed (desialylated PrP(C)) was not converted to PrP(Sc) in prion-infected neuronal cell lines and in scrapie-infected primary cortical neurons. In uninfected neurons desialylated PrP(C) was associated with greater concentrations of gangliosides and cholesterol than PrP(C). In addition, the targeting of desialylated PrP(C) to lipid rafts showed greater resistance to cholesterol depletion than PrP(C). The presence of desialylated PrP(C) caused the dissociation of cytoplasmic phospholipase A(2) (cPLA(2)) from PrP-containing lipid rafts, reduced the activation of cPLA(2) and inhibited PrP(Sc) production. We conclude that the sialic acid moiety of the GPI attached to PrP(C) modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrP(Sc) formation
    corecore