196 research outputs found

    Responses of Syrphids, Elaterids and Bees to Single-tree Selection Harvesting in Algonquin Provincial Park, Ontario

    Get PDF
    The species composition of hoverflies (Syrphidae), click beetles (Elateridae), and bees (Apoidea) was studied to determine whether there was a positive response in these flower-seeking insect groups to gaps in the canopy created through single-tree selection harvesting of Sugar Maple (Acer saccharum) and Yellow Birch (Betula alleghaniensis) in hardwood forests of the Great Lakes-St. Lawrence forest region of Algonquin Provincial Park, Ontario. There were significantly more hoverflies and bees collected in forest stands harvested within the previous five years than in wilderness zone (unharvested at least for 40 years) stands or stands harvested 15-20 years previously (old logged stands). Click beetles, especially Selatosomus pulcher (LeConte), were collected most often in old logged stands. Bees and click beetles were collected significantly later in the season in logged than in wilderness zone stands. Malaise traps resulted in higher capture rates for syrphids than pan traps, and only with these higher capture rates did we detect a significant increase in species richness in recently logged stands over that in wilderness stands. Changes in the numbers and phenology of flower-visiting insects may impact on reproductive success of flowering plants of the forest understory and deserves further study

    Dissipative Particle Dynamics with Energy Conservation

    Full text link
    The stochastic differential equations for a model of dissipative particle dynamics with both total energy and total momentum conservation in the particle-particle interactions are presented. The corresponding Fokker-Planck equation for the evolution of the probability distribution for the system is deduced together with the corresponding fluctuation-dissipation theorems ensuring that the ab initio chosen equilibrium probability distribution for the relevant variables is a stationary solution. When energy conservation is included, the system can sustain temperature gradients and heat flow can be modeled.Comment: 7 pages, submitted to Europhys. Let

    Dissipative Particle Dynamics with energy conservation

    Full text link
    Dissipative particle dynamics (DPD) does not conserve energy and this precludes its use in the study of thermal processes in complex fluids. We present here a generalization of DPD that incorporates an internal energy and a temperature variable for each particle. The dissipation induced by the dissipative forces between particles is invested in raising the internal energy of the particles. Thermal conduction occurs by means of (inverse) temperature differences. The model can be viewed as a simplified solver of the fluctuating hydrodynamic equations and opens up the possibility of studying thermal processes in complex fluids with a mesoscopic simulation technique.Comment: 5 page

    A benefit-cost analysis decision framework for mitigation of disease transmission at the wildlife–livestock interface

    Get PDF
    The economics of managing disease transmission at the wildlife–livestock interface have received heightened attention as agricultural and natural resource agencies struggle to tackle growing risks to animal health. In the fiscal landscape of increased scrutiny and shrinking budgets, resource managers seek to maximize the benefits and minimize the costs of disease mitigation efforts. To address this issue, a benefit-cost analysis decision framework was developed to help users make informed choices about whether and how to target disease management efforts in wildlife and livestock populations. Within the context of this framework, we examined the conclusions of a benefit-cost analysis conducted for vampire bat (Desmodus rotundus) rabies control in Mexico. The benefit-cost analysis decision framework provides a method that can be used to identify, assemble, and measure the components vital to the biological and economic efficiency of animal disease mitigation efforts. The framework can be applied to commercially-raised and free-ranging species at various levels of management – from detailed intervention strategies to broad programmatic actions. The ability of benefit cost analysis to illustrate the benefits of disease management projects per dollar spent allows for the determination of economic efficiency of alternative management actions. We believe this framework will be useful to the broader natural resource management community to maximize returns on financial and other resources invested in wildlife and livestock disease management programs

    Comparison of the efficacy of four drug combinations for immobilization of wild pigs

    Get PDF
    Field immobilization of native or invasive wild pigs (Sus scrofa) is challenging. Drug combinations commonly used often result in unsatisfactory immobilization, poor recovery, and adverse side effects, leading to unsafe handling conditions for both animals and humans. We compared four chemical immobilization combinations, medetomidine–midazolam–butorphanol (MMB), butorphanol–azaperone–medetomidine (BAM™), nalbuphine–medetomidine–azaperone (NalMed-A), and tiletamine– zolazepam–xylazine (TZX), to determine which drug combinations might provide better chemical immobilization of wild pigs. We achieved adequate immobilization with no post-recovery morbidity withMMB. Adequate immobilization was achieved with BAM™; however, we observed post-recovery morbidity. Both MMB and BAM™ produced more optimal results relative to body temperature, recovery, and post-recovery morbidity and mortality compared to TZX. Adequate immobilization was not achieved with NalMed-A. Of the four drug combinations examined, we conclude that MMB performed most optimally for immobilization and recovery of wild pigs
    • …
    corecore