6 research outputs found

    Direct extraction of polysaccharides from moso bamboo (Phylostachys heterocycla) chips using a mixed solvent system of an amino acid ionic liquid with polar aprotic solvent

    No full text
    Abstract The cellulose-dissolving ability and some physical properties of mixed solvents of an amino acid IL, N-methyl-N-(2-methoxyethyl)pyrolidin-1-ium 2,6-diaminohexanoate ([P1ME][Lys]), with polar aprotic solvents, such as 1,3-dimethylimidazolidinone (DMI), N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), and acetonitrile (CH₃CN), have been investigated. The viscosity was significantly reduced by the increasing content of polar aprotic solvents, and a 1:1 mixture (molar ratio) of [P1ME][Lys] with DMF showed 91.5 cP which corresponded to less than 1/10 compared to that of the pure IL at 25 °C (1058 cP). The β values of the mixed solvents, which have the IL contents over 0.1, exhibited β-values similar to that of the pure IL. On the other hand, the π-value was dependent on the ratio of the IL content, and the pure IL had the highest π-value. We found that the mixed solvent of [P1ME][Lys] with DMF (1:1) easily dissolved the cellulose and the mixed solvent could be used to extract cellulose from moso bamboo (Phylostachys heterocycla) powder. The efficiency of the extraction of cellulose from the bamboo powder was significantly increased when a 1:1 mixture of the IL with a polar aprotic solvent was used as the extracting solvent at 60 °C; the extraction ratio of the 1:1 mixture (IL: DMF) reached twice that of the pure IL. We thus obtained cellulose in 18% (w/w) yield from the bamboo powder

    TRPA1 underlies a sensing mechanism for O(2).

    Get PDF
    新たな生体内酸素センサー機構の発見. 京都大学プレスリリース. 2011-08-29.Oxygen (O(2)) is a prerequisite for cellular respiration in aerobic organisms but also elicits toxicity. To understand how animals cope with the ambivalent physiological nature of O(2), it is critical to elucidate the molecular mechanisms responsible for O(2) sensing. Here our systematic evaluation of transient receptor potential (TRP) cation channels using reactive disulfides with different redox potentials reveals the capability of TRPA1 to sense O(2). O(2) sensing is based upon disparate processes: whereas prolyl hydroxylases (PHDs) exert O(2)-dependent inhibition on TRPA1 activity in normoxia, direct O(2) action overrides the inhibition via the prominent sensitivity of TRPA1 to cysteine-mediated oxidation in hyperoxia. Unexpectedly, TRPA1 is activated through relief from the same PHD-mediated inhibition in hypoxia. In mice, disruption of the Trpa1 gene abolishes hyperoxia- and hypoxia-induced cationic currents in vagal and sensory neurons and thereby impedes enhancement of in vivo vagal discharges induced by hyperoxia and hypoxia. The results suggest a new O(2)-sensing mechanism mediated by TRPA1
    corecore