770 research outputs found

    Adaptive multibeam phased array design for a Spacelab experiment

    Get PDF
    The parametric tradeoff analyses and design for an Adaptive Multibeam Phased Array (AMPA) for a Spacelab experiment are described. This AMPA Experiment System was designed with particular emphasis to maximize channel capacity and minimize implementation and cost impacts for future austere maritime and aeronautical users, operating with a low gain hemispherical coverage antenna element, low effective radiated power, and low antenna gain-to-system noise temperature ratio

    Study on successive superconducting transitions in Ta2_{2}S2_{2}C from electrical resistivity and nonlinear AC magnetic susceptibility

    Get PDF
    Ta2_{2}S2_{2}C compound undergoes superconducting transitions at Tcl=3.60±0.02T_{cl} = 3.60 \pm 0.02 K and Tcu=9.0±0.2T_{cu} = 9.0 \pm 0.2 K. The nature of successive superconducting transitions has been studied from electrical resistivity, linear and nonlinear AC magnetic susceptibilities. The resistivity ρ\rho at HH = 0 shows a local maximum near TcuT_{cu}, a kink-like behavior around TclT_{cl}, and reduces to zero at below T0T_{0} = 2.1 K. The lnT\ln T dependence of ρ\rho is observed at HH = 50 kOe at low temperatures, which is due to two-dimensional weak-localization effect. Below TcuT_{cu} a two-dimensional superconducting phase occurs in each TaC layer. The linear and nonlinear susceptibilities χ1\chi_{1}^{\prime\prime}, χ3\chi_{3}^{\prime}, χ5\chi_{5}^{\prime}, and χ7\chi_{7}^{\prime} as well as the difference δχ\delta\chi (=χFCχZFC= \chi_{FC} - \chi_{ZFC}) between the FC and ZFC susceptibilities, start to appear below 6.0 K, the onset temperature of irreversibility. A drastic growth of the in-plane superconducting coherence length below 6.0 K gives rise to a three-dimensional superconducting phase below TclT_{cl}, through interplanar Josephson couplings between adjacent TaC layers. The oscillatory behavior of χ3\chi_{3}^{\prime\prime}, χ5\chi_{5}^{\prime\prime}, and χ7\chi_{7}^{\prime\prime} below TclT_{cl} is related to the nonlinear behavior arising from the thermally activated flux flow.Comment: 11 pages, 10 figures, Physical Review B (accepted for publication

    Biological Nanomotors with a Revolution, Linear, or Rotation Motion Mechanism

    Get PDF
    The ubiquitous biological nanomotors were classified into two categories in the past: linear and rotation motors. In 2013, a third type of biomotor, revolution without rotation (http://rnanano.osu.edu/movie.html), was discovered and found to be widespread among bacteria, eukaryotic viruses, and double-stranded DNA (dsDNA) bacteriophages. This review focuses on recent findings about various aspects of motors, including chirality, stoichiometry, channel size, entropy, conformational change, and energy usage rate, in a variety of well-studied motors, including FoF1 ATPase, helicases, viral dsDNA-packaging motors, bacterial chromosome translocases, myosin, kinesin, and dynein. In particular, dsDNA translocases are used to illustrate how these features relate to the motion mechanism and how nature elegantly evolved a revolution mechanism to avoid coiling and tangling during lengthy dsDNA genome transportation in cell division. Motor chirality and channel size are two factors that distinguish rotation motors from revolution motors. Rotation motors use right-handed channels to drive the right-handed dsDNA, similar to the way a nut drives the bolt with threads in same orientation; revolution motors use left-handed motor channels to revolve the right-handed dsDNA. Rotation motors use small channels (\u3c 2 nm in diameter) for the close contact of the channel wall with single-stranded DNA (ssDNA) or the 2-nm dsDNA bolt; revolution motors use larger channels (\u3e 3 nm) with room for the bolt to revolve. Binding and hydrolysis of ATP are linked to different conformational entropy changes in the motor that lead to altered affinity for the substrate and allow work to be done, for example, helicase unwinding of DNA or translocase directional movement of DNA
    corecore