4 research outputs found

    Loading of Gentamicin Sulfate into Poly (Lactic-Co-Glycolic Acid) Biodegradable Microspheres

    Get PDF
    Objective: In dental treatments, use of carriers for targeted antibiotic delivery would be optimal to efficiently decrease microbial count. In this study, gentamicin was loaded into polylactic co-glycolic acid (PLGA) microspheres and its release pattern was evaluated for 20 days.Methods: In this experimental study, PLGA microspheres loaded with gentamycin were produced  by the W/O/W method. The correct morphology of loaded microspheres was ensured using scanning electron microscopy (SEM). The rate of drug release from polymeric microspheres into the phosphate buffered saline (PBS) solution was measured during a 20-day period using spectroscopy. Data were analyzed using one-way ANOVA.Results: SEM micrographs showed that the produced microspheres had smooth and nonporous surfaces and 30-micron diameter. Assessment of the pattern of drug release from the PLGA microspheres loaded with gentamycin revealed a burst release on day six followed by a  stable pattern of release until day 20.Conclusion: Considering the biocompatibility of PLGA and optimal pattern of drug release, PLGA microspheres loaded with gentamicin can be successfully used for infection control and reduction of microbial count in dental treatments

    Ultraviolet-induced Surface Grafting of Octafluoropentyl Methacrylate on Polyether Ether Ketone for Inducing Antibiofilm Properties

    Get PDF
    Since octafluoropentyl methacrylate is an antifouling polymer, surface modification of polyether ether ketone with octafluoropentyl methacrylate is a practical approach to obtaining anti-biofilm biocompatible devices. In the current study, the surface treatment of polyether ether ketone by the use of ultraviolet irradiation, so as to graft (octafluoropentyl methacrylate) polymer chains, was initially implemented and then investigated. The Fourier-transform infrared and nuclear magnetic resonance spectra corroborated the appearance of new signals associated with the fluoroacrylate group. Thermogravimetric curves indicated enhanced asymmetry in the polymer structure due to the introduction of the said new groups. Measuring the peak area in differential scanning calorimetry experiments also showed additional bond formation. Static water contact angle measurements indicated a change in wettability to the more hydrophobic surface. The polyether ether ketone–octafluoropentyl methacrylate surface greatly reduced the protein adsorption. This efficient method can modulate and tune the surface properties of polyether ether ketone according to specific applications

    Triple antibiotic paste: momentous roles and applications in endodontics: a review

    No full text
    This study investigated the latest findings and notions regarding ‘triple antibiotic paste’ (TAP) and its applications in dentistry, particularly endodontics. TAP is a combination of 3 antibiotics, ciprofloxacin, metronidazole, and minocycline. Despite the problems and pitfalls research pertaining to this paste has unveiled, it has been vastly used in endodontic treatments. The paste's applications vary, from vital pulp therapy to the recently introduced regeneration and revascularisation protocol. Studies have shown that the paste can eliminate the root canal microorganisms and prepare an appropriate matrix for further treatments. This combination is able to remove diverse groups of obligate and facultative gram-positive and gram-negative bacteria, providing an environment for healing. In regeneration protocol cases, this allows the development, disinfection, and possible sterilization of the root canal system, so that new tissue can infiltrate and grow into the radicular area. Moreover, TAP is capable of creating a discipline in which other wanted and needed treatments can be successfully performed. In conclusion, TAP, as an antibacterial intracanal medication, has diverse uses. Nevertheless, despite its positive effects, the paste has shown drawbacks. Further research concerning the combined paste and other intracanal medications to control microbiota is a must

    An Innovative Drug Delivery System Loaded with a Modified Combination of Triple Antibiotics for Use in Endodontic Applications

    No full text
    The objective of the current study was to introduce “Polylactic co-Glycolic Acid- (PLGA-) Coated Ceramic Microparticles” as an innovative drug delivery system, loaded with a new combination of triple antibiotics (penicillin G, metronidazole, and ciprofloxacin (PMC)) for use in endodontic treatments. Ceramic microparticles were made from β-tricalcium phosphate and hydroxyapatite and examined by “Scanning Electronic Microscope (SEM).” Then, fixed amounts of the selected antibiotics were added to a prepared PLGA solution and stirred thoroughly. Next, the prepared ceramic microparticles were dispersed completely in the drugs solution. The deposited “PMC-loaded PLGA-coated ceramic microspheres (PPCMs)” were dried and incubated in phosphate buffer saline (PBS) for 21 days. The drug release from PPCMs was quantified by a UV spectrophotometer. The antimicrobial activity of PPCMs was investigated using the “Agar Plate Diffusion Test (ADT),” “Minimum Inhibitory Concentration (MIC),” and “Minimum Bactericidal Concentration (MBC)” against Enterococcus faecalis (E. faecalis) and Aggregatibacter actinomycetemcomitans (A.a). The cell viability test (MTT) was conducted for cytotoxicity against human gingival fibroblasts. SEM micrographs of PPCMs showed spherical-like ceramic microparticles with smooth surfaces. Crystal-like antibiotic particles (chunks) were also found on PPCMs. Initial burst of antibiotics (31 µg/mL, 160 µg/mL, and 18 µg/mL for ciprofloxacin, metronidazole, and penicillin G, respectively, in the first 4 days) followed by gradual and sustained release was observed within a period of 21 days. PPCMs demonstrated pH close to normal physiological environment and antibacterial activity against E. faecalis and A.a in the first 2 days. MTT showed cell viability of more than 70% for PPCMs after 24 h and 72 h of exposure. In conclusion, PPCMs demonstrated satisfactory release of antibiotics, antibacterial activity against the selected microorganisms, and biocompatibility. Thus, PPCMs may be used to deliver modified triple antibiotics to the root canal system for use in endodontic applications
    corecore