651 research outputs found

    The Ability of Avian Radars to Track Near Miss Bird Strike Events: A Missing Informational Link

    Get PDF
    The management of problem wildlife within the airfield environment is a difficult job and today’s biologists require as much information as possible. Bird censuses and actual strike events provide a good picture, but there is a valuable data set out there that has been overlooked, until now. Recent advances in commercially available, digital avian tracking radars have for the first time enabled biologists to track and evaluate near-miss events to increase the safety margin for our pilots and crew. As a part of the Department of Defense, Environmental Securities Technology Certification Program (ESTCP) Project: Integration and Validation of Avian Radars, tens of thousands of hours of bird tracks have been recorded. During the evaluation of many of these tracks, it was discovered that the radar software is capable of tracking and reporting near- miss events between birds and aircraft. This capability has motivated a study to characterize near-miss events and their importance for BASH management. This presentation will discuss the importance of near-miss information and how it can be used to enhance aviation safety. The definition of a near-miss event will be discussed, along with how this type of information can be used as a part of a facility bird strike management program. A review of some archived data sets will illustrate the potential for deriving risk assessments from near-miss information

    ARPES and NMTO Wannier Orbital Theory of LiMo6_{6}O17_{17} - Implications for Unusually Robust Quasi-One Dimensional Behavior

    Full text link
    We present the results of a combined study by band theory and angle resolved photoemission spectroscopy (ARPES) of the purple bronze, Li1−x_{1-x}Mo6_{6}O17_{17}. Structural and electronic origins of its unusually robust quasi-one dimensional (quasi-1D) behavior are investigated in detail. The band structure, in a large energy window around the Fermi energy, is basically 2D and formed by three Mo t2gt_{2g}-like extended Wannier orbitals, each one giving rise to a 1D band running at a 120∘^\circ angle to the two others. A structural "dimerization" from c/2\mathbf{c}/2 to c\mathbf{c} gaps the xzxz and yzyz bands while leaving the xyxy bands metallic in the gap, but resonantly coupled to the gap edges and, hence, to the other directions. The resulting complex shape of the quasi-1D Fermi surface (FS), verified by our ARPES, thus depends strongly on the Fermi energy position in the gap, implying a great sensitivity to Li stoichiometry of properties dependent on the FS, such as FS nesting or superconductivity. The strong resonances prevent either a two-band tight-binding model or a related real-space ladder picture from giving a valid description of the low-energy electronic structure. We use our extended knowledge of the electronic structure to newly advocate for framing LiMo6_{6}O17_{17} as a weak-coupling material and in that framework can rationalize both the robustness of its quasi-1D behavior and the rather large value of its Luttinger liquid (LL) exponent α\alpha. Down to a temperature of 6 \,K we find no evidence for a theoretically expected downward renormalization of perpendicular single particle hopping due to LL fluctuations in the quasi-1D chains.Comment: 53 pages, 17 Figures, 6 year

    Beware the Boojum: Caveats and Strengths of Avian Radar

    Get PDF
    Radar provides a useful and powerful tool to wildlife biologists and ornithologists. However, radar also has the potential for errors on a scale not previously possible. In this paper, we focus on the strengths and limitations of avian surveillance radars that use marine radar front-ends integrated with digital radar processors to provide 360° of coverage. Modern digital radar processors automatically extract target information, including such various target attributes as location, speed, heading, intensity, and radar cross-section (size) as functions of time. Such data can be stored indefinitely, providing a rich resource for ornithologists and wildlife managers. Interpreting these attributes in view of the sensor’s characteristics from which they are generated is the key to correctly deriving and exploiting application-specific information about birds and bats. We also discuss (1) weather radars and air-traffic control surveillance radars that could be used to monitor birds on larger, coarser spatial scales; (2) other nonsurveillance radar configurations, such as vertically scanning radars used for vertical profiling of birds along a particular corridor; and (3) Doppler, single-target tracking radars used for extracting radial velocity and wing-beat frequency information from individual birds for species identification purposes

    Violation of the isotropic-â„“\ell approximation in overdoped La_{2-x}Sr_xCuO_4

    Full text link
    Magnetotransport measurements on the overdoped cuprate La_{1.7}Sr_{0.3}CuO_4 are fitted using the Ong construction and band parameters inferred from angle-resolved photoemission. Within a band picture, the low temperature Hall data can only be fitted satisfactorily by invoking strong basal-plane anisotropy in the mean-free-path â„“\ell. This violation of the isotropic-â„“\ell approximation supports a picture of dominant small-angle elastic scattering in cuprates due to out-of-plane substitutional disorder. We show that both band anisotropy and anisotropy in the elastic scattering channel strongly renormalize the Hall coefficient in overdoped La_{2-x}Sr_xCuO_4 over a wide doping and temperature range.Comment: 4 pages, 4 figure

    Affordable, Real-Time, 3-D Avian Radar Networks For Centralized North American Bird Advisory Systems

    Get PDF
    Affordable avian radar systems are being developed for Natural Resource Management (NRM) and bird aircraft strike hazard (BASH) applications. Recently [I], the authors have reported on mobile avian radar system requirements and on a system design that is state-of-the-art. In the present paper, the system design of a single avian radar is expanded in scope to address 3-D avian radar networks. These are essential to fully realize an affordable yet high-performance North American bird advisory system. The proposed avian radar network design includes antenna, transceiver and signal processor designs for the avian radar sensor, network design, sensor integration, and system operation and control from an operations center

    Quasiparticle spectrum of the hybrid s+g-wave superconductors YNi_2B_2C and LuNi_2B_2C

    Full text link
    Recent experiments on single crystals of YNi2_2B2_2C have revealed the presence of point nodes in the superconducting energy gap Delta(k} at k = (1,0,0), (0,1,0), (-1,0,0), and (0,-1,0). In this paper we investigate the effects of impurity scattering on the quasiparticle spectrum in the vortex state of s+g-wave superconductors, which is found to be strongly modified in the presence of disorder. In particular, a gap in the quasiparticle energy spectrum is found to open even for infinitesimal impurity scattering, giving rise to exponentially activated thermodynamic response functions, such as the specific heat, the spin susceptibility, the superfluid density, and the nuclear spin lattice relaxation. Predictions derived from this study can be verified by measurements of the angular dependent magnetospecific heat and the magnetothermal conductivity.Comment: 8 pages, RevTex, 4 figure

    Dispersive Gap Mode of Phonons in Anisotropic Superconductors

    Full text link
    We estimate the effect of the superconducting gap anisotropy in the dispersive gap mode of phonons, which is observed by the neutron scattering on borocarbide superconductors. We numerically analyze the phonon spectrum considering the electron-phonon coupling, and examine contributions coming from the gap suppression and the sign change of the pairing function on the Fermi surface. When the sign of the pairing function is changed by the nesting translation, the gap mode does not appear. We also discuss the suppression of the phonon softening of the Kohn anomaly due to the onset of superconductivity. We demonstrate that observation of the gap dispersive mode is useful for sorting out the underlying superconducting pairing function.Comment: 7 pages, 12 figures, to be published in J. Phys. Soc. Jp
    • …
    corecore