13 research outputs found

    Cationically-modified nanoparticles for the pulmonary delivery of the telomerase inhibitor 2\u27;-O-Methyl RNA for the treatment of lung cancer

    Get PDF
    Lung cancer is one of the main causes of cancer-related death worldwide. One of the reasons behind the extensive tumour growth is telomerase enzyme, which is notably expressed in cancer cells. Recent strategies for cancer therapy include, therefore, telomerase inhibition with antisense RNA. A major challenge is the weak cellular uptake of these nucleotide-based drugs which necessitates the choice of appropriate carrier systems. The aim of this study was hence to evaluate chitosan-modified PLGA nanoparticles (cNP) as carrier for the antisense oligonucleotide 2\u27-O-Methyl-RNA (OMR) and their efficacy as inhalation therapy. Modification of the process parameters revealed the tuneability of the NP synthesis in terms of size and surface charge. Studying the cellular uptake of fluorescent cNPs with increasing amounts of chitosan showed better uptake in A549 than in Calu-3 cells. Chitosan significantly improved the uptake and binding with OMR; however, higher chitosan content reduced the uptake efficiency. Uptake studies under in vivo mimicking conditions using air-interface cultures showed superior cellular uptake of OMR/cNP nanoplexes compared to free OMR. As a proof of the concept, the ability of OMR to reduce telomerase activity was demonstrated. In conclusion, the concept of telomerase inhibition based on nanoscale delivery of antisense oligonucleotides represents a step forward to a new generation of cancer therapeutics.Lungenkrebs ist einer der HauptgrĂŒnde fĂŒr krebsbasierten TodesfĂ€lle weltweit. Mit einer der Ursachen fĂŒr das ungehemmte Wachstum von Krebszellen ist das Enzym Telomerase, das in vermehrtem Maße in Krebszellen auftritt. Eine interessante Behandlungsstrategie besteht daher in der Hemmung dieses Enzyms. Eine Hemmung der Telomerase ist mit antisens-RNA möglich. Um solche Arzneistoffe in die Zelle zu transportieren sind jedoch geeignete TrĂ€gersysteme notwendig. Das Hauptziel der vorliegenden Arbeit war die Untersuchung von Chitosan-modifizierten PLGA Nanopartikeln (cNP) als TrĂ€gersystem fĂŒr das Antisense-Oligonukleotid 2\u27-O-Methyl-RNA (OMR) sowie ihres möglichen Einsatzes fĂŒr einer Inhalationstherapie. Die Änderung der Prozessparameter erlaubt eine maßgeschneiderte Synthese der cNP hinsichtlich GrĂ¶ĂŸe und Ladung. Die Untersuchung der NP in Zellkultur-Modellen ergab eine bessere Aufnahme in A549 als in Calu-3 Zellen. Die zellulĂ€re Aufnahme unter Verwendung von realitĂ€tsnahen "Air-interface"-Kulturen zeigte zudem auch eine ĂŒberlegene Aufnahme von partikelbasierten Systemen im Vergleich zu freien Oligonukleotiden. Außerdem konnte gezeigt werden, dass die Telomerase -AktivitĂ€t in diesen Zellen tatsĂ€chlich gehemmt war. In der vorliegenden Arbeit konnte das Konzept der Telomerase-Hemmung zur Krebsbehandlung, basierend auf Komplexen von Antisense-Oligonukleotiden mit nanoskaligen TrĂ€gersystemen, erfolgreich in vitro demonstriert werden

    Kationisch modifizierte Nanopartikel fĂŒr die pulmonale Applikation des Telomerase-Inhibitors 2';-O-Methyl-RNA zur Behandlung des Lungenkarzinoms

    No full text
    Lung cancer is one of the main causes of cancer-related death worldwide. One of the reasons behind the extensive tumour growth is telomerase enzyme, which is notably expressed in cancer cells. Recent strategies for cancer therapy include, therefore, telomerase inhibition with antisense RNA. A major challenge is the weak cellular uptake of these nucleotide-based drugs which necessitates the choice of appropriate carrier systems. The aim of this study was hence to evaluate chitosan-modified PLGA nanoparticles (cNP) as carrier for the antisense oligonucleotide 2'-O-Methyl-RNA (OMR) and their efficacy as inhalation therapy. Modification of the process parameters revealed the tuneability of the NP synthesis in terms of size and surface charge. Studying the cellular uptake of fluorescent cNPs with increasing amounts of chitosan showed better uptake in A549 than in Calu-3 cells. Chitosan significantly improved the uptake and binding with OMR; however, higher chitosan content reduced the uptake efficiency. Uptake studies under in vivo mimicking conditions using air-interface cultures showed superior cellular uptake of OMR/cNP nanoplexes compared to free OMR. As a proof of the concept, the ability of OMR to reduce telomerase activity was demonstrated. In conclusion, the concept of telomerase inhibition based on nanoscale delivery of antisense oligonucleotides represents a step forward to a new generation of cancer therapeutics.Lungenkrebs ist einer der HauptgrĂŒnde fĂŒr krebsbasierten TodesfĂ€lle weltweit. Mit einer der Ursachen fĂŒr das ungehemmte Wachstum von Krebszellen ist das Enzym Telomerase, das in vermehrtem Maße in Krebszellen auftritt. Eine interessante Behandlungsstrategie besteht daher in der Hemmung dieses Enzyms. Eine Hemmung der Telomerase ist mit antisens-RNA möglich. Um solche Arzneistoffe in die Zelle zu transportieren sind jedoch geeignete TrĂ€gersysteme notwendig. Das Hauptziel der vorliegenden Arbeit war die Untersuchung von Chitosan-modifizierten PLGA Nanopartikeln (cNP) als TrĂ€gersystem fĂŒr das Antisense-Oligonukleotid 2'-O-Methyl-RNA (OMR) sowie ihres möglichen Einsatzes fĂŒr einer Inhalationstherapie. Die Änderung der Prozessparameter erlaubt eine maßgeschneiderte Synthese der cNP hinsichtlich GrĂ¶ĂŸe und Ladung. Die Untersuchung der NP in Zellkultur-Modellen ergab eine bessere Aufnahme in A549 als in Calu-3 Zellen. Die zellulĂ€re Aufnahme unter Verwendung von realitĂ€tsnahen "Air-interface"-Kulturen zeigte zudem auch eine ĂŒberlegene Aufnahme von partikelbasierten Systemen im Vergleich zu freien Oligonukleotiden. Außerdem konnte gezeigt werden, dass die Telomerase -AktivitĂ€t in diesen Zellen tatsĂ€chlich gehemmt war. In der vorliegenden Arbeit konnte das Konzept der Telomerase-Hemmung zur Krebsbehandlung, basierend auf Komplexen von Antisense-Oligonukleotiden mit nanoskaligen TrĂ€gersystemen, erfolgreich in vitro demonstriert werden

    Inhalable nano-embedded microspheres as an emerging way for local treatment of lung carcinoma: Benefits, Methods of preparation & characterizaton

    Get PDF
    Lung cancer is the leading cause of cancer deaths worldwide, and this makes it an attractive disease to review and possibly improve therapeutic treatment options. he extreme lethality of lung cancer is ascribed to the lack of early diagnostic strategies as in almost 50 % of the cases the disease is confirmed in stage IV, leaving low chance of survival. The inaccessibility to the deeper portions of the lung for conventional therapy further adds up to the complication in the treatment process. Surgery, radiation, chemotherapy, targeted treatments, and immunotherapy separate or in combination are commonly used to treat lung cancer. However, these treatment types may cause different side effects, and chemotherapy-based regimens appear to have reached a therapeutic plateau. Hence, effective, better- tolerated treatments are needed to address and hopefully overcome this conundrum. Nanocarriers through inhalational route offer many advantages like; 1) they achieve uniform distribution of drug among the alveoli, 2) better solubilization of the drug, 3) sustained drug release which subsequently decreases dosing frequency, 4) better patient compliance, 5) lesser side effects, and 6) improved drug internalization to the cells .Therefore, targeted inhalable NP delivery to the lungs is a potential area of research in cancer nanotechnology that catches the attention of many formulation scientists, oncologists, and biomedical researchers. Based on this literature review, we will discuss the development, characterization, and benefits of inhalable nanocarriers for local treatment of lung carcinoma.</p

    der UniversitÀt des Saarlandes von

    No full text
    Cationically-modified nanoparticles for the pulmonary delivery of the telomerase inhibitor 2’-O-Methyl RNA for the treatment of lung cancer Dissertation zur Erlangung des Grade

    Antibiotic-free nanotherapeutics: Ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors.

    Get PDF
    Cystic fibrosis (CF) is a genetic disease mainly manifested in the respiratory tract. Pseudomonas aeruginosa (P. aeruginosa) is the most common pathogen identified in cultures of the CF airways, however, its eradication with antibiotics remains challenging as it grows in biofilms that counterwork human immune response and dramatically decrease susceptibility to antibiotics. P. aeruginosa regulates pathogenicity via a cell-to-cell communication system known as quorum sensing (QS) involving the virulence factor (pyocyanin), thus representing an attractive target for coping with bacterial pathogenicity. The first in vivo potent QS inhibitor (QSI) was recently developed. Nevertheless, its lipophilic nature might hamper its penetration of non-cellular barriers such as mucus and bacterial biofilms, which limits its biomedical application. Successful anti-infective inhalation therapy necessitates proper design of a biodegradable nanocarrier allowing: 1) high loading and prolonged release, 2) mucus penetration, 3) effective pulmonary delivery, and 4) maintenance of the anti-virulence activity of the QSI. In this context, various pharmaceutical lipids were used to prepare ultra-small solid lipid nanoparticles (us-SLNs) by hot melt homogenization. Plain and QSI-loaded SLNs were characterized in terms of colloidal properties, drug loading, in vitro release and acute toxicity on Calu-3 cells. Mucus penetration was studied using a newly-developed confocal microscopy technique based on 3D-time-lapse imaging. For pulmonary application, nebulization efficiency of SLNs and lung deposition using next generation impactor (NGI) were performed. The anti-virulence efficacy was investigated by pyocyanin formation in P. aeruginosa cultures. Ultra-small SLNs (8h in simulated lung fluid with minor burst. All types and concentrations of plain and QSI-loaded SLNs maintained the viability of Calu-3 cells. 3D time-lapse confocal imaging proved the ability of SLNs to penetrate into artificial sputum model. SLNs were efficiently nebulized; NGI experiments revealed their deposition in the bronchial region. Overall, nanoencapsulated QSI showed up to sevenfold superior anti-virulence activity to the free compound. Most interestingly, the plain SLNs exhibited anti-virulence properties themselves, which was shown to be related to anti-virulence effects of the emulsifiers used. These startling findings represent a new perspective of ultimate significance in the area of nano-based delivery of novel anti-infectives

    Mucoadhesive Bilayered Patches for Administration of Sumatriptan Succinate

    No full text
    The purpose of this study was to develop and optimize formulations of mucoadhesive bilayered buccal patches of sumatriptan succinate using chitosan as the base matrix. The patches were prepared by the solvent casting method. Gelatin and polyvinyl pyrrolidone (PVP) K30 were incorporated into the patches, to improve the film properties of the patches. The patches were found to be smooth in appearance, uniform in thickness, weight, and drug content; showed good mucoadhesive strength; and good folding endurance. A 32 full factorial design was employed to study the effect of independent variables viz. levels of chitosan and PVP K30, which significantly influenced characteristics like swelling index, in-vitro mucoadhesive strength, in vitro drug release, and in-vitro residence time. Different penetration enhancers were tried to improve the permeation of sumatriptan succinate through buccal mucosa. Formulation containing 3% dimethyl sulfoxide showed good permeation of sumatriptan succinate through mucosa. Histopathological studies revealed no buccal mucosal damage. It can be concluded that buccal route can be one of the alternatives available for administration of sumatriptan succinate
    corecore