3,765 research outputs found
Predictability of reset switching voltages in unipolar resistance switching
In unipolar resistance switching of NiO capacitors, Joule heating in the
conducting channels should cause a strong nonlinearity in the low resistance
state current-voltage (I-V) curves. Due to the percolating nature of the
conducting channels, the reset current IR, can be scaled to the nonlinear
coefficient Bo of the I-V curves. This scaling relationship can be used to
predict reset voltages, independent of NiO capacitor size; it can also be
applied to TiO2 and FeOy capacitors. Using this relation, we developed an error
correction scheme to provide a clear window for separating reset and set
voltages in memory operations
Fine Details of the Nodal Electronic Excitations in BiSrCaCuO
Very high energy resolution photoemission experiments on high quality samples
of optimally doped BiSrCaCuO show new features in the
low-energy electronic excitations. A marked change in the binding energy and
temperature dependence of the near-nodal scattering rates is observed near the
superconducting transition temperature, . The temperature slope of the
scattering rate measured at low energy shows a discontinuity at ~. In the
superconducting state, coherent excitations are found with the scattering rates
showing a cubic dependence on frequency and temperature. The superconducting
gap has a d-wave magnitude with negligible contribution from higher harmonics.
Further, the bi-layer splitting has been found to be finite at the nodal point.Comment: 5 pages, 4 figure
Analytic study of the three-urn model for separation of sand
We present an analytic study of the three-urn model for separation of sand.
We solve analytically the master equation and the first-passage problem. We
find that the stationary probability distribution obeys the detailed balance
and is governed by the {\it free energy}. We find that the characteristic
lifetime of a cluster diverges algebraically with exponent 1/3 at the limit of
stability.Comment: 5pages, 4 figures include
Dried fruits, nuts, and cancer risk and survival: a review of the evidence and future research directions
Dried fruits and nuts contain high amounts of nutrients and phytochemicals—all of which may have anticarcinogenic, anti-inflammatory, and antioxidant properties. This narrative review summarizes the evidence for dried fruits and nuts and cancer incidence, mortality, and survival and their potential anticancer properties. The evidence for dried fruits in cancer outcomes is limited, but existing studies have suggested an inverse relationship between total dried fruit consumption and cancer risk. A higher consumption of nuts has been associated with a reduced risk of several site-specific cancers in prospective cohort studies, including cancers of the colon, lung, and pancreas, with relative risks per 5 g/day increment equal to 0.75 (95% CI 0.60, 0.94), 0.97 (95% CI 0.95, 0.98), and 0.94 (95% CI 0.89, 0.99), respectively. A daily intake of total nuts of 28 g/day has also been associated with a 21% reduction in the rate of cancer mortality. There is also some evidence that frequent nut consumption is associated with improved survival outcomes among patients with colorectal, breast, and prostate cancer; however, further studies are needed. Future research directions include the investigation of additional cancer types, including rare types of cancer. For cancer prognosis, additional studies with pre- and postdiagnosis dietary assessment are warranted
Frictional Drag between Two Dilute Two-Dimensional Hole Layers
We report drag measurements on dilute double layer two-dimensional hole
systems in the regime of r_s=19~39. We observed a strong enhancement of the
drag over the simple Boltzmann calculations of Coulomb interaction, and
deviations from the T^2 dependence which cannot be explained by
phonon-mediated, plasmon-enhanced, or disorder-related processes. We suggest
that this deviation results from interaction effects in the dilute regime.Comment: 4 pages, 3 figures, accepted in Phys. Rev. Lett. Added single layer
transport dat
Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr,Ti)O3 capacitors
We investigated domain nucleation process in epitaxial Pb(Zr,Ti)O3 capacitors
under a modified piezoresponse force microscope. We obtained domain evolution
images during polarization switching process and observed that domain
nucleation occurs at particular sites. This inhomogeneous nucleation process
should play an important role in an early stage of switching and under a high
electric field. We found that the number of nuclei is linearly proportional to
log(switching time), suggesting a broad distribution of activation energies for
nucleation. The nucleation sites for a positive bias differ from those for a
negative bias, indicating that most nucleation sites are located at
ferroelectric/electrode interfaces
Load distribution in weighted complex networks
We study the load distribution in weighted networks by measuring the
effective number of optimal paths passing through a given vertex. The optimal
path, along which the total cost is minimum, crucially depend on the cost
distribution function . In the strong disorder limit, where , the load distribution follows a power law both in the
Erd\H{o}s-R\'enyi (ER) random graphs and in the scale-free (SF) networks, and
its characteristics are determined by the structure of the minimum spanning
tree. The distribution of loads at vertices with a given vertex degree also
follows the SF nature similar to the whole load distribution, implying that the
global transport property is not correlated to the local structural
information. Finally, we measure the effect of disorder by the correlation
coefficient between vertex degree and load, finding that it is larger for ER
networks than for SF networks.Comment: 4 pages, 4 figures, final version published in PR
Conserved cosmological structures in the one-loop superstring effective action
A generic form of low-energy effective action of superstring theories with
one-loop quantum correction is well known. Based on this action we derive the
complete perturbation equations and general analytic solutions in the
cosmological spacetime. Using the solutions we identify conserved quantities
characterizing the perturbations: the amplitude of gravitational wave and the
perturbed three-space curvature in the uniform-field gauge both in the
large-scale limit, and the angular-momentum of rotational perturbation are
conserved independently of changing gravity sector. Implications for
calculating perturbation spectra generated in the inflation era based on the
string action are presented.Comment: 5 pages, no figure, To appear in Phys. Rev.
- …