10 research outputs found

    Differences in dietary patterns related to metabolic health by gut microbial enterotypes of Korean adults

    Get PDF
    Diet has a profound impact on the progression of metabolic syndrome (MetS) into various diseases. The gut microbiota could modulate the effect of diet on metabolic health. We examined whether dietary patterns related to MetS differed according to gut microbial enterotypes among 348 Korean adults aged 18–60 years recruited between 2018∼2021 in a cross-sectional study. The enterotype of each participant was identified based on 16S rRNA gut microbiota data. The main dietary pattern predicting MetS (MetS-DP) of each enterotype was derived using reduced-rank regression (RRR) models. In the RRR models, 27 food group intakes assessed by a semi-quantitative food frequency questionnaire and MetS prediction markers including triglyceride to high-density lipoprotein cholesterol (TG/HDL) ratio and homeostatic model assessment for insulin resistance (HOMA-IR) were used as predictor and response variables, respectively. The MetS-DP extracted in Bacteroides enterotype (B-type) was characterized by high consumption of refined white rice and low consumption of eggs, vegetables, and mushrooms. The MetS-DP derived among Prevotella enterotype (P-type) was characterized by a high intake of sugary food and low intakes of bread, fermented legumes, and fermented vegetables. The MetS-DP of B-type was positively associated with metabolic unhealthy status (ORT3 vs. T1 = 3.5; 95% CI = 1.5–8.2), comparing the highest tertile to the lowest tertile. Although it was not significantly associated with overall metabolic unhealthy status, the MetS-DP of P-type was positively associated with hyperglycemia risk (ORT3 vs. T1 = 6.2; 95% CI = 1.6–24.3). These results suggest that MetS-DP may differ according to the gut microbial enterotype of each individual. If such associations are found to be causal, personalized nutrition guidelines based on the enterotypes could be recommended to prevent MetS

    Engineered Quantum Light Sources from 2D Monolayers on a Micro-actuator

    No full text
    We demonstrate position and frequency control of quantum emitters from integrated WSe2 monolayers on a strain tunable Si actuator. The engineered quantum emitters will provide important hardware for scalable and integrated quantum photonic system

    Stark Tuning of Single-Photon Emitters in Hexagonal Boron Nitride

    No full text
    Single-photon emitters play an essential role in quantum technologies, including quantum computing and quantum communications. Atomic defects in hexagonal boron nitride (h-BN) have recently emerged as new room-temperature single-photon emitters in solid-state systems, but the development of scalable and tunable h-BN single-photon emitters requires external methods that can control the emission energy of individual defects. Here, by fabricating van der Waals heterostructures of h-BN and graphene, we demonstrate the electrical control of single-photon emission from atomic defects in h-BN via the Stark effect. By applying an out-of-plane electric field through graphene gates, we observed Stark shifts as large as 5.4 nm per GV/m. The Stark shift generated upon a vertical electric field suggests the existence of out-of-plane dipole moments associated with atomic defect emitters, which is supported by first-principles theoretical calculations. Furthermore, we found field-induced discrete modification and stabilization of emission intensity, which were reversibly controllable with an external electric field.11Nsciescopu

    Taxonomic Composition and Diversity of the Gut Microbiota in Relation to Habitual Dietary Intake in Korean Adults

    No full text
    We investigated associations of habitual dietary intake with the taxonomic composition and diversity of the human gut microbiota in 222 Koreans aged 18–58 years in a cross-sectional study. Gut microbiota data were obtained by 16S rRNA gene sequencing on DNA extracted from fecal samples. The habitual diet for the previous year was assessed by a food frequency questionnaire. After multivariable adjustment, intake of several food groups including vegetables, fermented legumes, legumes, dairy products, processed meat, and non-alcoholic beverages were associated with major phyla of the gut microbiota. A dietary pattern related to higher α-diversity (HiαDP) derived by reduced rank regression was characterized by higher intakes of fermented legumes, vegetables, seaweeds, and nuts/seeds and lower intakes of non-alcoholic beverages. The HiαDP was positively associated with several genera of Firmicutes such as Lactobacillus, Ruminococcus, and Eubacterium (all p < 0.05). Among enterotypes identified by principal coordinate analysis based on the β-diversity, the Ruminococcus enterotype had higher HiαDP scores and was strongly positively associated with intakes of vegetables, seaweeds, and nuts/seeds, compared to the two other enterotypes. We conclude that a plant- and fermented food-based diet was positively associated with some genera of Firmicutes (e.g., Lactobacillus, Ruminococcus, and Eubacterium) reflecting better gut microbial health

    Gas-Phase Alkali Metal-Assisted MOCVD Growth of 2D Transition Metal Dichalcogenides for Large-Scale Precise Nucleation Control

    No full text
    Advances in large-area and high-quality 2D transition metal dichalcogenides (TMDCs) growth are essential for semiconductor applications. Here, the gas-phase alkali metal-assisted metal-organic chemical vapor deposition (GAA-MOCVD) of 2D TMDCs is reported. It is determined that sodium propionate (SP) is an ideal gas-phase alkali-metal additive for nucleation control in the MOCVD of 2D TMDCs. The grain size of MoS2 in the GAA-MOCVD process is larger than that in the conventional MOCVD process. This method can be applied to the growth of various TMDCs (MoS2, MoSe2, WSe2, and WSe2) and the generation of large-scale continuous films. Furthermore, the growth behaviors of MoS2 under different SP and oxygen injection time conditions are systematically investigated to determine the effects of SP and oxygen on nucleation control in the GAA-MOCVD process. It is found that the combination of SP and oxygen increases the grain size and nucleation suppression of MoS2. Thus, the GAA-MOCVD with a precise and controllable supply of a gas-phase alkali metal and oxygen allows achievement of optimum growth conditions that maximizes the grain size of MoS2. It is expected that GAA-MOCVD can provide a way for batch fabrication of large-scale atomically thin electronic devices based on 2D semiconductors

    Surface-Dominated HfO<sub>2</sub> Nanorod-Based Memristor Exhibiting Highly Linear and Symmetrical Conductance Modulation for High-Precision Neuromorphic Computing

    No full text
    The switching characteristics and performance of oxide-based memristors are predominately determined by oxygen- or oxygen-vacancy-mediated redox reactions and the consequent formation of conducting filaments (CFs). Devices using oxide thin films as the switching layer usually require an electroforming process for subsequent switching operations, which induces large device-to-device variations. In addition, the hard-to-control redox reaction during repeated switching causes random fluctuations or degradation of each resistance state, hindering reliable switching operations. In this study, an HfO2 nanorod (NR)-based memristor is proposed for simultaneously achieving highly uniform, electroforming-free, fast, and reliable analogue switching properties. The well-controlled redox reaction due to the easy gas exchange with the environment at the surface of the NRs enhances the generation of oxygen or oxygen vacancies during the switching operation, resulting in electroforming-free and reliable switching behavior. In addition, the one-dimensional surface growth of CFs facilitates highly linear conductance modulation with smaller conductance changes compared with the two-dimensional volume growth in thin-film-based memristors, resulting in a high accuracy of >92% in the Modified National Institute of Standards and Technology pattern-recognition test and desirable spike-timing-dependent plasticity

    Area-selective atomic layer deposition on 2D monolayer lateral superlattices

    No full text
    Abstract The advanced patterning process is the basis of integration technology to realize the development of next-generation high-speed, low-power consumption devices. Recently, area-selective atomic layer deposition (AS-ALD), which allows the direct deposition of target materials on the desired area using a deposition barrier, has emerged as an alternative patterning process. However, the AS-ALD process remains challenging to use for the improvement of patterning resolution and selectivity. In this study, we report a superlattice-based AS-ALD (SAS-ALD) process using a two-dimensional (2D) MoS2-MoSe2 lateral superlattice as a pre-defining template. We achieved a minimum half pitch size of a sub-10 nm scale for the resulting AS-ALD on the 2D superlattice template by controlling the duration time of chemical vapor deposition (CVD) precursors. SAS-ALD introduces a mechanism that enables selectivity through the adsorption and diffusion processes of ALD precursors, distinctly different from conventional AS-ALD method. This technique facilitates selective deposition even on small pattern sizes and is compatible with the use of highly reactive precursors like trimethyl aluminum. Moreover, it allows for the selective deposition of a variety of materials, including Al2O3, HfO2, Ru, Te, and Sb2Se3

    Large Memory Window of van der Waals Heterostructure Devices Based on MOCVD-Grown 2D Layered Ge4Se9

    No full text
    Van der Waals (vdW) heterostructures have drawn much interest over the last decade owing to their absence of dangling bonds and their intriguing low-dimensional properties. The emergence of 2D materials has enabled the achievement of significant progress in both the discovery of physical phenomena and the realization of superior devices. In this work, the group IV metal chalcogenide 2D-layered Ge4Se9 is introduced as a new selection of insulating vdW material. 2D-layered Ge4Se9 is synthesized with a rectangular shape using the metalcorganic chemical vapor deposition system using a liquid germanium precursor at 240 degrees C. By stacking the Ge4Se9 and MoS2, vdW heterostructure devices are fabricated with a giant memory window of 129 V by sweeping back gate range of +/- 80 V. The gate-independent decay time reveals that the large hysteresis is induced by the interfacial charge transfer, which originates from the low band offset. Moreover, repeatable conductance changes are observed over the 2250 pulses with low non-linearity values of 0.26 and 0.95 for potentiation and depression curves, respectively. The energy consumption of the MoS2/Ge4Se9 device is about 15 fJ for operating energy and the learning accuracy of image classification reaches 88.3%, which further proves the great potential of artificial synapses
    corecore