381 research outputs found

    Optical properties of metal nanoparticles with arbitrary shapes

    Full text link
    We have studied the optical properties of metallic nanoparticles with arbitrary shape. We performed theoretical calculations of the absorption, extinction and scattering efficiencies, which can be directly compared with experiments, using the Discrete Dipole Approximation (DDA). In this work, the main features in the optical spectra have been investigated depending of the geometry and size of the nanoparticles. The origin of the optical spectra are discussed in terms of the size, shape and material properties of each nanoparticle, showing that a nanoparticle can be distinguish by its optical signature.Comment: 19 pages + 8 figure

    The role of geometry on dispersive forces

    Full text link
    The role of geometry on dispersive forces is investigated by calculating the energy between different spheroidal particles and planar surfaces, both with arbitrary dielectric properties. The energy is obtained in the non-retarded limit using a spectral representation formalism and calculating the interaction between the surface plasmons of the two macroscopic bodies. The energy is a power-law function of the separation of the bodies, where the exponent value depends on the geometrical parameters of the system, like the separation distance between bodies, and the aspect ratio among minor and major axes of the spheroid.Comment: Presneted at QFEXT05, Barcelona 2005. Submitted to J. Phys.

    First-Principles Studies of Hydrogenated Si(111)--7×\times7

    Full text link
    The relaxed geometries and electronic properties of the hydrogenated phases of the Si(111)-7×\times7 surface are studied using first-principles molecular dynamics. A monohydride phase, with one H per dangling bond adsorbed on the bare surface is found to be energetically favorable. Another phase where 43 hydrogens saturate the dangling bonds created by the removal of the adatoms from the clean surface is found to be nearly equivalent energetically. Experimental STM and differential reflectance characteristics of the hydrogenated surfaces agree well with the calculated features.Comment: REVTEX manuscript with 3 postscript figures, all included in uu file. Also available at http://www.phy.ohiou.edu/~ulloa/ulloa.htm

    Excitons in twisted AA' hexagonal boron nitride bilayers

    Full text link
    The twisted hexagonal boron nitride (hBN) bilayer has demonstrated exceptional properties, particularly the existence of electronic flat bands without needing a magic angle, suggesting strong excitonic effects. Therefore, a systematic approach is presented to study the excitonic properties of twisted AA' hBN using the Bethe-Salpeter equation based on single-particle tight-binding wave functions. These are provided by a one-particle Hamiltonian that is parameterized to describe the main features of {\it ab initio} calculations. The Bethe-Salpeter equation is then solved in the so-called excitonic transition representation, which significantly reduces the problem dimensionality by exploiting the system's symmetries. Consequently, the excitonic energies and the excitonic wave functions are obtained from the direct diagonalization of the effective two-particle Hamiltonian of the Bethe-Salpeter equation. We have studied rotation angles as low as 7.347.34^{\circ}. The model allows the study of commensurate and incommensurate moir\'e patterns at much lower computational cost than the {\it ab initio} version of the Bethe-Salpeter equation. Here, using the model and effective screening of the Keldysh type, we could obtain the absorption spectra and characterize the excitonic properties of twisted hBN bilayers for different rotation angles, demonstrating how this property affects the excitonic energies and localizations of their wavefunctions.Comment: 32 pages, 16 figure

    Land subsidence caused by a single water extraction well and rapid water infiltration

    Get PDF
    Nowadays several parts of the world suffer from land subsidence. This setting of the earth surface occurs due to different factors such as earth quakes, mining activities, and gas, oil and water withdrawal. This research presents a numerical study of the influence of land subsidence caused by a single water extraction well and rapid water infiltration into structural soil discontinuities. The numerical simulation of the infiltration was based on a two-phase flow-model for porous media, and for the deformation a Mohr–Coulomb model was used. A two-layered system with a fault zone is presented. First a single water extraction well is simulated producing a cone-shaped (conical) water level depletion, which can cause land subsidence. Land Subsidence can be further increased if a hydrological barrier as a result of a discontinuity, exists. After water extraction a water column is applied on the top boundary for one hours in order to represent a strong storm which produces rapid water infiltration through the discontinuity as well as soil deformation. Both events are analysed and compared in order to characterize deformation of both elements and to get a better understanding of the land subsidence and new fracture formations

    Spectral representation of the Casimir Force Between a Sphere and a Substrate

    Full text link
    We calculate the Casimir force in the non-retarded limit between a spherical nanoparticle and a substrate, and we found that high-multipolar contributions are very important when the sphere is very close to the substrate. We show that the highly inhomegenous electromagnetic field induced by the presence of the substrate, can enhance the Casimir force by orders of magnitude, compared with the classical dipolar approximation.Comment: 5 page + 4 figures. Submitted to Phys. Rev. Let

    Anisotropic optical response of the diamond (111)-2x1 surface

    Full text link
    The optical properties of the 2×\times1 reconstruction of the diamond (111) surface are investigated. The electronic structure and optical properties of the surface are studied using a microscopic tight-binding approach. We calculate the dielectric response describing the surface region and investigate the origin of the electronic transitions involving surface and bulk states. A large anisotropy in the surface dielectric response appears as a consequence of the asymmetric reconstruction on the surface plane, which gives rise to the zigzag Pandey chains. The results are presented in terms of the reflectance anisotropy and electron energy loss spectra. While our results are in good agreement with available experimental data, additional experiments are proposed in order to unambiguously determine the surface electronic structure of this interesting surface.Comment: REVTEX manuscript with 6 postscript figures, all included in uu file. Also available at http://www.phy.ohiou.edu/~ulloa/ulloa.html Submitted to Phys. Rev.

    A Novel ascaroside controls the parasitic life cycle of the entomopathogenic nematode heterorhabditis bacteriophora

    Get PDF
    Entomopathogenic nematodes survive in the soil as stress-resistant infective juveniles that seek out and infect insect hosts. Upon sensing internal host cues, the infective juveniles regurgitate bacterial pathogens from their gut that ultimately kill the host. Inside the host, the nematode develops into a reproductive adult and multiplies until unknown cues trigger the accumulation of infective juveniles. Here, we show that the entomopathogenic nematode Heterorhabditis bacteriophora uses a small-molecule pheromone to control infective juvenile development. The pheromone is structurally related to the dauer pheromone ascarosides that the free-living nematode Caenorhabditis elegans uses to control its development. However, none of the C. elegans ascarosides are effective in H. bacteriophora, suggesting that there is a high degree of species specificity. Our report is the first to show that ascarosides are important regulators of development in a parasitic nematode species. An understanding of chemical signaling in parasitic nematodes may enable the development of chemical tools to control these species. © 2012 American Chemical Society
    corecore