103 research outputs found
Up-regulation of platelet-activating factor synthases and its receptor in spinal cord contribute to development of neuropathic pain following peripheral nerve injury
<p>Abstract</p> <p>Background</p> <p>Platelet-activating factor (PAF; 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a lipid mediator derived from cell membrane. It has been reported that PAF is involved in various pathological conditions, such as spinal cord injury, multiple sclerosis, neuropathic pain and intrathecal administration of PAF leads to tactile allodynia. However, the expression of PAF synthases and its receptor in the spinal cord following peripheral nerve injury is unknown.</p> <p>Methods</p> <p>Using the rat spared nerve injury (SNI) model, we investigated the expression of PAF synthases (LPCAT1 and 2) and PAF receptor (PAFr) mRNAs in the spinal cord. Reverse transcription polymerase chain reaction (RT-PCR) and double-labeling analysis of <it>in situ </it>hybridization histochemistry (ISHH) with immunohistochemistry (IHC) were employed for the analyses. Pain behaviors were also examined with PAFr antagonist (WEB2086).</p> <p>Results</p> <p>RT-PCR showed that LPCAT2 mRNA was increased in the ipsilateral spinal cord after injury, but not LPCAT1 mRNA. Double-labeling of ISHH with IHC revealed that LPCAT1 and 2 mRNAs were constitutively expressed by a subset of neurons, and LPCAT2 mRNA was increased in spinal microglia after nerve injury. RT-PCR showed that PAFr mRNA was dramatically increased in the ipsilateral spinal cord after nerve injury. Double-labeling analysis of ISHH with IHC revealed that after injury PAFr mRNA was predominantly colocalized with microglia in the spinal cord. Continuous intrathecal administration of the PAFr antagonist suppressed mechanical allodynia following peripheral nerve injury. Delayed administration of a PAFr antagonist did not reverse the mechanical allodynia.</p> <p>Conclusions</p> <p>Our data show the histological localization of PAF synthases and its receptor in the spinal cord following peripheral nerve injury, and suggest that PAF/PAFr signaling in the spinal cord acts in an autocrine or paracrine manner among the activated microglia and neurons, thus contributing to development of neuropathic pain.</p
Urocortin1-induced anorexia is regulated by activation of the serotonin 2C receptor in the brain
AbstractThis study was conducted to determine the mechanisms by which serotonin (5-hydroxytryptamine, 5-HT) receptors are involved in the suppression of food intake in a rat stress model and to observe the degree of activation in the areas of the brain involved in feeding. In the stress model, male Sprague–Dawley rats (8 weeks old) were given intracerebroventricular injections of urocortin (UCN) 1. To determine the role of the 5-HT2c receptor (5-HT2cR) in the decreased food intake in UCN1-treated rats, specific 5-HT2cR or 5-HT2b receptor (5-HT2bR) antagonists were administered. Food intake was markedly reduced in UCN1-injected rats compared with phosphate buffered saline treated control rats. Intraperitoneal administration of a 5-HT2cR antagonist, but not a 5-HT2bR antagonist, significantly inhibited the decreased food intake. To assess the involvement of neural activation, we tracked the expression of c-fos mRNA as a neuronal activation marker. Expression of the c-fos mRNA in the arcuate nucleus, ventromedial hypothalamic nucleus (VMH) and rostral ventrolateral medulla (RVLM) in UNC1-injected rats showed significantly higher expression than in the PBS-injected rats. Increased c-fos mRNA was also observed in the paraventricular nucleus (PVN), the nucleus of the solitary tract (NTS), and the amygdala (AMG) after injection of UCN1. Increased 5-HT2cR protein expression was also observed in several areas. However, increased coexpression of 5-HT2cR and c-fos was observed in the PVN, VMH, NTS, RVLM and AMG. Whereas, pro-opiomelanocortin mRNA expression was not changed. In an UNC1-induced stress model, 5-HT2cR expression and activation was found in brain areas involved in feeding control
Keishibukuryogan, a Traditional Japanese Medicine, Inhibits Platelet Aggregation in Guinea Pig Whole Blood
Effects of keishibukuryogan (KBG) on platelet aggregation were investigated. To ensure the specificity of KBG, tokishakuyakusan (TSS) and kamisyoyosan (KSS), which are known to have platelet aggregation-inhibiting effects, and rikkunshito (RKT) and shakuyakukanzoto (SKT), which are considered to be devoid of such effects, were used for comparison. The platelet aggregation of each test drug was measured by the screen filtration pressure method using whole blood of guinea pigs and expressed as a collagen-induced pressure rate (%) or a collagen concentration required for 50% increase in the pressure rate (PATI value). KBG suppressed the collagen-induced whole blood pressure rate increase and increased the PATI value, like TSS and KSS. Neither RKT nor SKT showed these effects. The Moutan cortex and Cinnamomi cortex, the constituent crude drugs of KBG, showed KBG-like pressure rate suppression and PATI-increasing effects. Furthermore, paeonol, a representative component of Moutan cortex, and aspirin which is known to have platelet aggregation-inhibiting activity (COX-1 inhibitor) also showed similar effects. These results suggest that the platelet aggregation-inhibiting activity of the constituent crude drugs Moutan cortex and Cinnamomi cortex is involved in the improving effects of KBG on impaired microcirculation and that paeonol plays a role in these effects
Abnormal spermatogenesis and male infertility in testicular zinc finger protein Zfp318-knockout mice
Zfp318, a mouse gene with a Cys2/His2 zinc finger motif, is mainly expressed in germ cells in the testis. It encodes two alternative transcripts, which regulate androgen receptor-mediated transcriptional activation or repression by overexpression of them. However, the role of Zfp318 is still obscure in vivo, especially in spermatogenesis. To elucidate the role of Zfp318 during gamete production, we established a knockout mouse line. Zfp318-null male mice exhibited infertility, whereas Zfp318-null female mice displayed normal fertility. ZFP318 was expressed during multiple stages of spermatogenesis, from spermatocytes to round spermatids. The nuclei of secondary spermatocytes showed high levels of expression. Histological analysis and quantitative analysis of DNA content showed decreased numbers of both spermatids in the seminiferous tubules and mature spermatozoa in the epididymides of Zfp318-null mice. These results suggest that Zfp318 is expressed as a functional protein in testicular germ cells and plays an important role in meiosis during spermatogenesis
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
Tokyo Guidelines 2018 diagnostic criteria and severity grading of acute cholecystitis (with videos)
The Tokyo Guidelines 2013 (TG13) for acute cholangitis and cholecystitis were globally disseminated and various clinical studies about the management of acute cholecystitis were reported by many researchers and clinicians from all over the world. The 1st edition of the Tokyo Guidelines 2007 (TG07) was revised in 2013. According to that revision, the TG13 diagnostic criteria of acute cholecystitis provided better specificity and higher diagnostic accuracy. Thorough our literature search about diagnostic criteria for acute cholecystitis, new and strong evidence that had been released from 2013 to 2017 was not found with serious and important issues about using TG13 diagnostic criteria of acute cholecystitis. On the other hand, the TG13 severity grading for acute cholecystitis has been validated in numerous studies. As a result of these reviews, the TG13 severity grading for acute cholecystitis was significantly associated with parameters including 30-day overall mortality, length of hospital stay, conversion rates to open surgery, and medical costs. In terms of severity assessment, breakthrough and intensive literature for revising severity grading was not reported. Consequently, TG13 diagnostic criteria and severity grading were judged from numerous validation studies as useful indicators in clinical practice and adopted as TG18/TG13 diagnostic criteria and severity grading of acute cholecystitis without any modification. Free full articles and mobile app of TG18 are available at: http://www.jshbps.jp/modules/en/index.php?content_id=47. Related clinical questions and references are also include
TG18 management strategies for gallbladder drainage in patients with acute cholecystitis: Updated Tokyo Guidelines 2018 (with videos)
Since the publication of the Tokyo Guidelines in 2007 and their revision in 2013, appropriate management for acute cholecystitis has been more clearly established. Since the last revision, several manuscripts, especially for alternative endoscopic techniques, have been reported; therefore, additional evaluation and refinement of the 2013 Guidelines is required. We describe a standard drainage method for surgically high-risk patients with acute cholecystitis and the latest developed endoscopic gallbladder drainage techniques described in the updated Tokyo Guidelines 2018 (TG18). Our study confirmed that percutaneous transhepatic gallbladder drainage should be considered the first alternative to surgical intervention in surgically high-risk patients with acute cholecystitis. Also, endoscopic transpapillary gallbladder drainage or endoscopic ultrasound-guided gallbladder drainage can be considered in high-volume institutes by skilled endoscopists. In the endoscopic transpapillary approach, either endoscopic naso-gallbladder drainage or gallbladder stenting can be considered for gallbladder drainage. We also introduce special techniques and the latest outcomes of endoscopic ultrasound-guided gallbladder drainage studies. Free full articles and mobile app of TG18 are available at: . Related clinical questions and references are also include
Septic pulmonary embolism associated with periodontal disease: a case report and literature review
Abstract Background Periodontal disease, including periodontitis, has been reported to be a rare cause of septic pulmonary embolism (SPE). It is however extremely difficult to isolate the causative pathogen of periodontal disease-associated SPE from blood cultures of these patients. Case presentation In this study, an 85-year-old Japanese man was admitted with fever and worsening malaise. He was later noted to have multiple bilateral subpleural pulmonary nodules on chest computed tomography scan. After admission, Parvimonas micra (P. micra) was isolated from his blood culture. This was followed by a meticulous search for the primary source of SPE, focusing on the head and neck areas. Consequently, apical periodontitis and infratemporal fossa abscess were identified as the primary sources of SPE. Although P. micra is one of the most frequently detected bacteria in the infected root canals of teeth with chronic apical periodontitis, it has rarely been proven as a causative pathogen of periodontal disease-associated SPE. Conclusions This case study demonstrated that periodontal disease is an important primary source of SPE and P. micra could be a causative pathogen of SPE
- …