127 research outputs found

    Interstitial lung disease in children - genetic background and associated phenotypes

    Get PDF
    Interstitial lung disease in children represents a group of rare chronic respiratory disorders. There is growing evidence that mutations in the surfactant protein C gene play a role in the pathogenesis of certain forms of pediatric interstitial lung disease. Recently, mutations in the ABCA3 transporter were found as an underlying cause of fatal respiratory failure in neonates without surfactant protein B deficiency. Especially in familiar cases or in children of consanguineous parents, genetic diagnosis provides an useful tool to identify the underlying etiology of interstitial lung disease. The aim of this review is to summarize and to describe in detail the clinical features of hereditary interstitial lung disease in children. The knowledge of gene variants and associated phenotypes is crucial to identify relevant patients in clinical practice

    Altered surfactant homeostasis and recurrent respiratory failure secondary to TTF-1 nuclear targeting defect

    Get PDF
    Background: Mutations of genes affecting surfactant homeostasis, such as SFTPB, SFTPC and ABCA3, lead to diffuse lung disease in neonates and children. Haploinsufficiency of NKX2.1, the gene encoding the thyroid transcription factor-1 (TTF-1) - critical for lung, thyroid and central nervous system morphogenesis and function - causes a rare form of progressive respiratory failure designated brain-lung-thyroid syndrome. Molecular mechanisms involved in this syndrome are heterogeneous and poorly explored. We report a novel TTF-1 molecular defect causing recurrent respiratory failure episodes in an infant.Methods: The subject was an infant with severe neonatal respiratory distress syndrome followed by recurrent respiratory failure episodes, hypopituitarism and neurological abnormalities. Lung histology and ultrastructure were assessed by surgical biopsy. Surfactant-related genes were studied by direct genomic DNA sequencing and array chromatine genomic hybridization (aCGH). Surfactant protein expression in lung tissue was analyzed by confocal immunofluorescence microscopy. For kinetics studies, surfactant protein B and disaturated phosphatidylcholine (DSPC) were isolated from serial tracheal aspirates after intravenous administration of stable isotope-labeled 2H2O and 13C-leucine; fractional synthetic rate was derived from gas chromatography/mass spectrometry 2H and 13C enrichment curves. Six intubated infants with no primary lung disease were used as controls.Results: Lung biopsy showed desquamative interstitial pneumonitis and lamellar body abnormalities suggestive of genetic surfactant deficiency. Genetic studies identified a heterozygous ABCA3 mutation, L941P, previously unreported. No SFTPB, SFTPC or NKX2.1 mutations or deletions were found. However, immunofluorescence studies showed TTF-1 prevalently expressed in type II cell cytoplasm instead of nucleus, indicating defective nuclear targeting. This pattern has not been reported in human and was not found in two healthy controls and in five ABCA3 mutation carriers. Kinetic studies demonstrated a marked reduction of SP-B synthesis (43.2 vs. 76.5 \ub1 24.8%/day); conversely, DSPC synthesis was higher (12.4 vs. 6.3 \ub1 0.5%/day) compared to controls, although there was a marked reduction of DSPC content in tracheal aspirates (29.8 vs. 56.1 \ub1 12.4% of total phospholipid content).Conclusion: Defective TTF-1 signaling may result in profound surfactant homeostasis disruption and neonatal/pediatric diffuse lung disease. Heterozygous ABCA3 missense mutations may act as disease modifiers in other genetic surfactant defects

    Therapeutic lung lavages in children and adults

    Get PDF
    BACKGROUND: Pulmonary alveolar proteinosis (PAP) is a rare disease, characterized by excessive intra-alveolar accumulation of surfactant lipids and proteins. Therapeutic whole lung lavages are currently the principle therapeutic option in adults. Not much is known on the kinetics of the wash out process, especially in children. METHODS: In 4 pediatric and 6 adult PAP patients 45 therapeutic half lung lavages were investigated retrospectively. Total protein, protein concentration and, in one child with a surfactant protein C mutation, aberrant pro-SP-C protein, were determined during wash out. RESULTS: The removal of protein from the lungs followed an exponential decline and averaged for adult patients 2 – 20 g and <0.5 to 6 g for pediatric patients. The average protein concentration of consecutive portions was the same in all patient groups, however was elevated in pediatric patients when expressed per body weight. The amount of an aberrant pro-SP-C protein, which was present in one patient with a SP-C mutation, constantly decreased with ongoing lavage. Measuring the optical density of the lavage fluid obtained allowed to monitor the wash out process during the lavages at the bedside and to determine the termination of the lavage procedure at normal protein concentration. CONCLUSION: Following therapeutic half lung lavages by biochemical variables may help to estimate the degree of alveolar filling with proteinaceous material and to improve the efficiency of the wash out, especially in children

    Expression profiles of hydrophobic surfactant proteins in children with diffuse chronic lung disease

    Get PDF
    BACKGROUND: Abnormalities of the intracellular metabolism of the hydrophobic surfactant proteins SP-B and SP-C and their precursors may be causally linked to chronic childhood diffuse lung diseases. The profile of these proteins in the alveolar space is unknown in such subjects. METHODS: We analyzed bronchoalveolar lavage fluid by Western blotting for SP-B, SP-C and their proforms in children with pulmonary alveolar proteinosis (PAP, n = 15), children with no SP-B (n = 6), children with chronic respiratory distress of unknown cause (cRD, n = 7), in comparison to children without lung disease (n = 15) or chronic obstructive bronchitis (n = 19). RESULTS: Pro-SP-B of 25–26 kD was commonly abundant in all groups of subjects, suggesting that their presence is not of diagnostic value for processing defects. In contrast, pro-SP-B peptides cleaved off during intracellular processing of SP-B and smaller than 19–21 kD, were exclusively found in PAP and cRD. In 4 of 6 children with no SP-B, mutations of SFTPB or SPTPC genes were found. Pro-SP-C forms were identified at very low frequency. Their presence was clearly, but not exclusively associated with mutations of the SFTPB and SPTPC genes, impeding their usage as candidates for diagnostic screening. CONCLUSION: Immuno-analysis of the hydrophobic surfactant proteins and their precursor forms in bronchoalveolar lavage is minimally invasive and can give valuable clues for the involvement of processing abnormalities in pediatric pulmonary disorders

    Clinical biological and genetic heterogeneity of the inborn errors of pulmonary surfactant metabolism

    Get PDF
    Pulmonary surfactant is a multimolecular complex located at the air-water interface within the alveolus to which a range of physical (surface-active properties) and immune functions has been assigned. This complex consists of a surface-active lipid layer (consisting mainly of phospholipids), and of an aqueous subphase. From discrete surfactant sub-fractions one can isolate strongly hydrophobic surf acta nt proteins B (SP-B) and C (SP-C) as well as collectins SP-A and SP-D, which were shown to have specific structural, metabolic, or immune properties. Inborn or acquired abnormalities of the surfactant, qualitative or quantitative in nature, account for a number of human diseases. Beside hyaline membrane disease of the preterm neonate, a cluster of hereditary or acquired lung diseases has been characterized by periodic acid-Schiff-positive material filling the alveoli. From this heterogeneous nosologic group, at least two discrete entities presently emerge. The first is the SP-B deficiency, in which an essentially proteinaceous material is stored within the alveoli, and which represents an autosomal recessive Mendelian entity linked to the SFTPB gene (MIM 1786640). The disease usually generally entails neonatal respiratory distress with rapid fatal outcome, although partial or transient deficiencies have also been observed. The second is alveolar proteinosis, characterized by the storage of a mixed protein and lipid material, which constitutes a relatively heterogeneous clinical and biological syndrome, especially with regard to age at onset (from the neonate through to adulthood) as well as the severity of associated signs. Murine models, with a targeted mutation of the gene encoding granulocyte macrophage colony-stimulating factor (GM-CSF) (Csfgm) or the beta subunit of its receptor (II3rb1) support the hypothesis of an abnormality of surfactant turnover in which the alveolar macrophage is a key player. Apart from SP-B deficiency, in which a near-consensus diagnostic chart can be designed, the ascertainment of other abnormalities of surfactant metabolism is not straightforward. The disentanglement of this disease cluster is however essential to propose specific therapeutic procedures: repeated broncho-alveolar ravages, GM-CSF replacement, bone marrow grafting or lung transplantation

    Long-term follow-up and treatment of congenital alveolar proteinosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical presentation, diagnosis, management and outcome of molecularly defined congenital pulmonary alveolar proteinosis (PAP) due to mutations in the GM-CSF receptor are not well known.</p> <p>Case presentation</p> <p>A 2 1/2 years old girl was diagnosed as having alveolar proteinosis. Whole lung lavages were performed with a new catheter balloon technique, feasible in small sized airways. Because of some interstitial inflammation in the lung biopsy and to further improve the condition, empirical therapy with systemic steroids and azathioprin, and inhaled and subcutaneous GMCSF, were used. Based on clinical measures, total protein and lipid recovered by whole lung lavages, all these treatments were without benefit. Conversely, severe respiratory viral infections and an invasive aspergillosis with aspergilloma formation occurred. Recently the novel homozygous stop mutation p.Ser25X of the GMCSF receptor alpha chain was identified in the patient. This mutation leads to a lack of functional GMCSF receptor and a reduced response to GMCSF stimulation of CD11b expression of mononuclear cells of the patient. Subsequently a very intense treatment with monthly lavages was initiated, resulting for the first time in complete resolution of partial respiratory insufficiency and a significant improvement of the overall somato-psychosocial condition of the child.</p> <p>Conclusions</p> <p>The long term management from early childhood into young adolescence of severe alveolar proteinosis due to GMCSF receptor deficiency requires a dedicated specialized team to perform technically demanding whole lung lavages and cope with complications.</p
    corecore