639 research outputs found

    Neue Methoden zur Bekämpfung des Echten Mehltaus im Ökologischen Landbau

    Get PDF
    Blattoberflächen-modifizierende Salzapplikationen sollten als Bekämpfungsmittel gegen Echten Mehltau an Tomaten und Gurken getestet werden hinsichtlich folgender Eigenschaften: - Wirkung verschiedener Salze - Blattverträglichkeit - Untersuchung der unterschiedlichen Wirkungsmechanismen mittels REM - Übertragbarkeit in praxisnahe Versuche. Die verschiedenen Salzlösungen und Kombinationen aus diesen Salzen unterschieden sich deutlich in ihrer Wirkung auf Gurkenmehltau. Die beste Wirkung ergab sich mit allenfalls geringer Schädigung des Blattes mit 0,1% MnCl2, 1 % Patentkali (K2SO4/MgSO4) und 1% Knöterichextrakt. MnCl2 liegt auf Grund seines niedrigen Deliqueszenzpunktes ständig gelöst auf der Blattoberfläche vor, wogegen sich Knöterichextrakt und Patentkali auf der Blattoberfläche in einer Art „Salzkriechen“ verteilen durch häufigen Wechsel zwischen Trocknen und Wiederverflüssigung. Salzschäden ließen sich verringern durch Zusatz von Netzmitteln zur Sprühlösung. Rasterelektronische Visualisierung zeigte für alle untersuchten Lösungen einen direkt toxischen Effekt auf die Mehltausporen und ihre Hyphen in jeder Entwicklungsphase des Pilzes. Eine Verbesserung des Nährstoffstatus der Pflanzen scheidet als Wirkungsmechanismus aus, da alle Pflanzen optimal ernährt waren und die Behandlungen zu keinen signifikanten Veränderungen der Nährstoffgehalte in den Blättern führten. Besonders chloridische Salze führten z.T. zu erheblicher Nekrotisierung der Blätter. Da diese Salzlösungen jedoch auch in geringer Konzentration in der Lage waren, die Ausbreitung des Echten Mehltau effektiv zu verhindern, sollten Möglichkeiten zur Mikrodosierung dieser Salze geprüft werden. Extreme Witterungsbedingungen im Sommer 2003 führten dazu, dass Praxistests nicht ausgeführt oder normal beendet werden konnten. Es gilt jedoch als sicher, dass einige der untersuchten Salzmischungen in geringen Konzentrationen (zw. 0,1 und 1%) den Befall mit Echten Mehltaupilzen effektiv reduzieren können, ohne Blattoberflächen zu schädigen

    Ground-state properties of rutile: electron-correlation effects

    Full text link
    Electron-correlation effects on cohesive energy, lattice constant and bulk compressibility of rutile are calculated using an ab-initio scheme. A competition between the two groups of partially covalent Ti-O bonds is the reason that the correlation energy does not change linearly with deviations from the equilibrium geometry, but is dominated by quadratic terms instead. As a consequence, the Hartree-Fock lattice constants are close to the experimental ones, while the compressibility is strongly renormalized by electronic correlations.Comment: 1 figure to appear in Phys. Rev.

    Omalizumab may decrease IgE synthesis by targeting membrane IgE+ human B cells

    Get PDF
    Omalizumab, is a humanized anti-IgE monoclonal antibody used to treat allergic asthma. Decreased serum IgE levels, lower eosinophil and B cell counts have been noted as a result of treatment. In vitro studies and animal models support the hypothesis that omalizumab inhibits IgE synthesis by B cells and causes elimination of IgE-expressing cells either by induction of apoptosis or induction of anergy or tolerance. METHODS: We examined the influence of omalizumab on human tonsillar B cell survival and on the genes involved in IgE synthesis. Tonsillar B cells were stimulated with IL-4 plus anti-CD40 antibody to induce class switch recombination to IgE production in the presence or absence of omalizumab. Cell viability was assessed and RNA extracted to examine specific genes involved in IgE synthesis. CONCLUSIONS: We found that omalizumab reduced viable cell numbers but this was not through induction of apoptosis. IL-4R and germline Cϵ mRNA levels were decreased as well as the number of membrane IgE+ cells in B cells treated with omalizumab. These data suggest that omalizumab may decrease IgE synthesis by human B cells by specifically targeting membrane IgE-bearing B cells and inducing a state of anergy

    Electron affinities of the first- and second- row atoms: benchmark ab initio and density functional calculations

    Full text link
    A benchmark ab initio and density functional (DFT) study has been carried out on the electron affinities of the first- and second-row atoms. The ab initio study involves basis sets of spdfghspdfgh and spdfghispdfghi quality, extrapolations to the 1-particle basis set limit, and a combination of the CCSD(T), CCSDT, and full CI electron correlation methods. Scalar relativistic and spin-orbit coupling effects were taken into account. On average, the best ab initio results agree to better than 0.001 eV with the most recent experimental results. Correcting for imperfections in the CCSD(T) method improves the mean absolute error by an order of magnitude, while for accurate results on the second-row atoms inclusion of relativistic corrections is essential. The latter are significantly overestimated at the SCF level; for accurate spin-orbit splitting constants of second-row atoms inclusion of (2s,2p) correlation is essential. In the DFT calculations it is found that results for the 1st-row atoms are very sensitive to the exchange functional, while those for second-row atoms are rather more sensitive to the correlation functional. While the LYP correlation functional works best for first-row atoms, its PW91 counterpart appears to be preferable for second-row atoms. Among ``pure DFT'' (nonhybrid) functionals, G96PW91 (Gill 1996 exchange combined with Perdew-Wang 1991 correlation) puts in the best overall performance. The best results overall are obtained with the 1-parameter hybrid modified Perdew-Wang (mPW1) exchange functionals of Adamo and Barone [J. Chem. Phys. {\bf 108}, 664 (1998)], with mPW1LYP yielding the best results for first-row, and mPW1PW91 for second-row atoms. Indications exist that a hybrid of the type aa mPW1LYP + (1a)(1-a) mPW1PW91 yields better results than either of the constituent functionals.Comment: Phys. Rev. A, in press (revised version, review of issues concerning DFT and electron affinities added

    Incremental Medians via Online Bidding

    Full text link
    In the k-median problem we are given sets of facilities and customers, and distances between them. For a given set F of facilities, the cost of serving a customer u is the minimum distance between u and a facility in F. The goal is to find a set F of k facilities that minimizes the sum, over all customers, of their service costs. Following Mettu and Plaxton, we study the incremental medians problem, where k is not known in advance, and the algorithm produces a nested sequence of facility sets where the kth set has size k. The algorithm is c-cost-competitive if the cost of each set is at most c times the cost of the optimum set of size k. We give improved incremental algorithms for the metric version: an 8-cost-competitive deterministic algorithm, a 2e ~ 5.44-cost-competitive randomized algorithm, a (24+epsilon)-cost-competitive, poly-time deterministic algorithm, and a (6e+epsilon ~ .31)-cost-competitive, poly-time randomized algorithm. The algorithm is s-size-competitive if the cost of the kth set is at most the minimum cost of any set of size k, and has size at most s k. The optimal size-competitive ratios for this problem are 4 (deterministic) and e (randomized). We present the first poly-time O(log m)-size-approximation algorithm for the offline problem and first poly-time O(log m)-size-competitive algorithm for the incremental problem. Our proofs reduce incremental medians to the following online bidding problem: faced with an unknown threshold T, an algorithm submits "bids" until it submits a bid that is at least the threshold. It pays the sum of all its bids. We prove that folklore algorithms for online bidding are optimally competitive.Comment: conference version appeared in LATIN 2006 as "Oblivious Medians via Online Bidding

    Autologous graft-versus-host disease induction in advanced breast cancer: role of peripheral blood progenitor cells

    Get PDF
    The purpose of the present study was to investigate the impact of the use of peripheral blood progenitor cells (PBPCs) on the induction of autologous graft-versus-host disease (GVHD) in patients with advanced breast cancer. 14 women with stage IIIB and 36 women with stage IV breast cancer received cyclosporine (CsA) 2.5 mg kg–1 i.v. daily, d 0–28, and interferon-gamma (IFNg) 0.025 mg/m2 s.c. qod, d7–28, following PBPC-T ± bone marrow transplantation (BMT). Preceding high-dose chemotherapy consisted of cyclophosphamide 6 g/m2 and thiotepa 800 mg/m2. Histologically proven ≥grade II cutaneous GVHD was induced in18/50 (36%) of patients and was independent of the source of haematopoietic support. In vitro studies showed that post-transplant, 76% of patients had developed auto-cytotoxicity against their own pre-transplant PHA-lymphoblasts. A significant correlation between the occurrence of GVHD ≥grade II and cytolysis was observed in the NK cell-line K562 and the T47D breast cancer cell-line. With a median follow-up of 2½ years, the overall survival (OS) is 58%, the disease-free survival (DFS) 26%, both independent of the development of GVHD and similar to what has been observed in other studies on high-dose chemotherapy in advanced breast cancer. It therefore remains unclear whether the induction of autologous GVHD with the occurrence of auto-cytotoxic lymphocytes can result in an anti-tumour effect in this group of patients. © 2000 Cancer Research Campaign http://www.bjcancer.co

    SO(4) Symmetry of the Transfer Matrix for the One-Dimensional Hubbard Model

    Full text link
    The SO(4) invariance of the transfer matrix for the one-dimensional Hubbard model is clarified from the QISM (quantum inverse scattering method) point of view. We demonstrate the SO(4) symmetry by means of the fermionic R-matrix, which satisfy the graded Yang-Baxter relation. The transformation law of the fermionic L-operator under the SO(4) rotation is identified with a kind of gauge transformation, which determines the corresponding transformation of the fermionic creation and annihilation operators under the SO(4) rotation. The transfer matrix is confirmed to be invariant under the SO(4) rotation, which ensures the SO(4) invariance of the conserved currents including the Hamiltonian. Furthermore, we show that the representation of the higher conserved currents in terms of the Clifford algebra gives manifestly SO(4) invariant forms.Comment: 20 pages, LaTeX file using citesort.st
    corecore