2 research outputs found

    A deep learning model predicts the presence of diverse cancer types using circulating tumor cells

    No full text
    Abstract Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor and intravasate into the bloodstream. Thus, non-invasive liquid biopsies are being used to analyze CTC-expressed genes to identify potential cancer biomarkers. In this regard, several studies have used gene expression changes in blood to predict the presence of CTC and, consequently, cancer. However, the CTC mRNA data has not been used to develop a generic approach that indicates the presence of multiple cancer types. In this study, we developed such a generic approach. Briefly, we designed two computational workflows, one using the raw mRNA data and deep learning (DL) and the other exploiting five hub gene ranking algorithms (Degree, Maximum Neighborhood Component, Betweenness Centrality, Closeness Centrality, and Stress Centrality) with machine learning (ML). Both workflows aim to determine the top genes that best distinguish cancer types based on the CTC mRNA data. We demonstrate that our automated, robust DL framework (DNNraw) more accurately indicates the presence of multiple cancer types using the CTC gene expression data than multiple ML approaches. The DL approach achieved average precision of 0.9652, recall of 0.9640, f1-score of 0.9638 and overall accuracy of 0.9640. Furthermore, since we designed multiple approaches, we also provide a bioinformatics analysis of the gene commonly identified as top-ranked by the different methods. To our knowledge, this is the first study wherein a generic approach has been developed to predict the presence of multiple cancer types using raw CTC mRNA data, as opposed to other models that require a feature selection step

    Hybrid arithmetic optimization algorithm with deep learning model for secure Unmanned Aerial Vehicle networks

    Get PDF
    Securing Unmanned Aerial Vehicle (UAV) systems is vital to safeguard the processes involved in operating the drones. This involves the execution of robust communication encryption processes to defend the data exchanged between the UAVs and ground control stations. Intrusion detection, powered by Deep Learning (DL) techniques such as Convolutional Neural Networks (CNN), allows the classification and identification of potential attacks or illegal objects in the operational region of the drone, thus distinguishing them from the routine basics. The current research work offers a new Hybrid Arithmetic Optimizer Algorithm with DL method for Secure Unmanned Aerial Vehicle Network (HAOADL-UAVN) model. The purpose of the proposed HAOADL-UAVN technique is to secure the communication that occurs in UAV networks via threat detection. At the primary level, the network data is normalized through min-max normalization approach in order to scale the input dataset into a useful format. The HAOA is used to select a set of optimal features. Next, the security is attained via Deep Belief Network Autoencoder (DBN-AE)-based threat detection. At last, the hyperparameter choice of the DBN-AE method is implemented using the Seagull Optimization Algorithm (SOA). A huge array of simulations was conducted using the benchmark datasets to demonstrate the improved performance of the proposed HAOADL-UAVN algorithm. The comprehensive results underline the supremacy of the HAOADL-UAVN methodology under distinct evaluation metrics
    corecore