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Abstract: Securing Unmanned Aerial Vehicle (UAV) systems is vital to safeguard the processes 

involved in operating the drones. This involves the execution of robust communication encryption 

processes to defend the data exchanged between the UAVs and ground control stations. Intrusion 

detection, powered by Deep Learning (DL) techniques such as Convolutional Neural Networks (CNN), 

allows the classification and identification of potential attacks or illegal objects in the operational 

region of the drone, thus distinguishing them from the routine basics. The current research work offers 

a new Hybrid Arithmetic Optimizer Algorithm with DL method for Secure Unmanned Aerial Vehicle 
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Network (HAOADL-UAVN) model. The purpose of the proposed HAOADL-UAVN technique is to 

secure the communication that occurs in UAV networks via threat detection. At the primary level, the 

network data is normalized through min-max normalization approach in order to scale the input dataset 

into a useful format. The HAOA is used to select a set of optimal features. Next, the security is attained 

via Deep Belief Network Autoencoder (DBN-AE)-based threat detection. At last, the hyperparameter 

choice of the DBN-AE method is implemented using the Seagull Optimization Algorithm (SOA). A 

huge array of simulations was conducted using the benchmark datasets to demonstrate the improved 

performance of the proposed HAOADL-UAVN algorithm. The comprehensive results underline the 

supremacy of the HAOADL-UAVN methodology under distinct evaluation metrics. 

Keywords: Unmanned Aerial Vehicle; arithmetic optimization algorithm; feature selection; 

autoencoder; deep learning 

Mathematics Subject Classification: 68M11, 68M25, 68T07, 68W1 

 

1. Introduction 

Unmanned Aerial Vehicle (UAV) networks provide distinct benefits in smart-city infrastructure, 

which makes it a crucial element for expensive programs [1]. These vehicles help in real-time 

monitoring and surveillance abilities, thus allowing the authorities to collect vital information from the 

targeted sources and locations. Further, the UAVs have confirmed advantages in some sort of situations 

such as monitoring the visitors in a live location, ecological analysis as well as disaster responses for 

protecting the public [2]. While the UAVs are progressively getting established in smart cities, the 

privacy and safety concerns also increase in parallel [3]. Privacy problems followed by intrusion 

detection and prevention have become essential, since the UAVs collect and transmit a massive 

quantity of data. The extensive incorporation of the UAVs in smart cities has become an innovative 

dimension for both public protection as well as urban management [4]. These multipurpose aircrafts 

possess real-time information-gathering abilities that can be leveraged in different fields from traffic 

monitoring to disaster response [5]. However, the development of the UAVs still poses a serious 

challenge i.e., to assure the privacy and security of the gathered and transferred data. 

Intrusion is the most significant problem that raise suspicions upon the UAV networks since it has 

deleterious effects on data integrity and public security [6]. When the UAVs are developed targeting 

crucial and significant applications, then it becomes predominant to protect their functions against 

possible attacks. Furthermore, the sensitive features of the data demand strong privacy-preserving 

methods [7]. In the studies conducted earlier, the researchers have made significant developments in 

the domain of UAV intrusion detection. A few data-driven approaches have been employed in domains 

with higher security coefficients such as industrial and military sectors since these sectors need higher 

efficiency and accuracy. The Machine Learning (ML) techniques can accomplish superior 

effectiveness compared to non-ML algorithms because of the former’s learning and training 

components [8]. Therefore, a cost-effective and an efficient IDS is extremely required to ensure the 

security of drone networks. Numerous researchers have developed Artificial Intelligence (AI) methods, 

comprising ML, Deep Learning (DL), and other approaches [9]. Both DL and ML models remain the 

most commonly used methodologies in network security, since they are capable of learning the 

valuable features in network traffic and identify both abnormal and normal activities depending on its 
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learning ability. The ML approaches learn valuable insights from network traffic data by primarily 

relying upon feature engineering [10]. Simultaneously, the DL methods are also based on feature 

engineering and are precise in automatically learning the intricate features from complete data thanks 

to its deep architecture. 

The current research article designs an innovative Hybrid Arithmetic Optimization Algorithm 

with DL Model for Secure Unmanned Aerial Vehicle Networks (HAOADL-UAVN) technique. The 

purpose of the proposed HAOADL-UAVN technique is to secure the communication in UAV networks 

via threat detection. At the primary level, the network data is normalized through min-max 

normalization approach so as to scale the input data into a useful design. The HAOA is used to select 

an optimal set of features. Next, the security is attained via Deep Belief Network Autoencoder (DBN-

AE)-based threat detection. At last, the selection of the hyperparameters for the DBN-AE method is 

accomplished using the Seagull Optimization Algorithm (SOA). A huge array of simulations was 

conducted using the benchmark datasets in order to demonstrate the improved performance of the 

HAOADL-UAVN model. The key contributions of the current study are listed herewith. 

• A new HAOADL-UAVN technique is developed to safeguard the communication that occurs 

in UAV systems by addressing the communication tasks and applying robust encryption 

processes. 

• The HAOADL-UAVN model incorporates the HAOA for optimum feature selection, thus 

improving the efficacy and significance of the dataset for threat recognition. 

• The DBN-AE model is used for threat detection in which DL models like CNNs are leveraged 

to recognize and categorize the potential attacks or illegal objects in UAV operational region. 

• The SOA is incorporated for hyperparameter tuning of the DBN-AE model, thus refining the 

complete performance and flexibility of the threat detection method. 

2. Related works 

Kateb and Ragab [11] developed the Archimedes Optimizer with DL-based Aerial Image 

Classification and Intrusion Detection (AODL-AICID) method that had two main processes. This 

technique was inclusive of Backpropagation Neural Network (BPNN)-based classifier, Archimedes 

Optimizer Algorithm (AOA)-based hyperparameter optimizer, and MobileNetv2 feature extraction. 

Furthermore, the AODLAICID algorithm implemented a stacked bi-directional-LSTM (SBi-LSTM) 

architecture. In the last stage, Nadam optimization technique was employed for hyperparameter tuning. 

In the study conducted earlier [12], an architecture was proposed to protect the UAVs against malicious 

attackers and improve the rogue UAVs. The model, introduced in the study, implemented a dynamic 

theoretical grid-based layout in real geographical utilization. Public key cryptographic techniques were 

utilized to secure the communication connection. Neural Network (NN)-based forecasting was 

employed in this study to recognize the abnormalities. Principal Component Analysis (PCA) based on 

multi-variable statistical evaluation was performed to recognize the outliers in aerial network 

infrastructure. The authors [13] developed the Deep Reinforcement Learning (DRL) method. This 

method discussed about the possible applications and architecture of the UAVs. Further, intrusion 

attacks were considered in UAV aerial computing networks. Then, the DRL-empowered intrusion 

detection process was executed to safeguard the security facilities. At last, the method arrived at the 

decision through numerous valuable analytical methods. 
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Masadeh et al. [14] designed an autonomous UAV model by redeveloping the optimization issues 

through Markov-decision technique with the deployment of RL techniques. Afterwards, the RL-based 

method was applied to resolve the maximization issue of the developed value. Particularly, various 

model variations of the RL-based technique were employed in this study to have various exploration 

methods and temporal variance approaches. In literature [15], a Secured Privacy-Preserving 

Framework (SP2F) architecture was designing including two key engines. In this two-stage privacy 

engine, BC and smart contract-based enhanced Proof of Work (ePoW) helped in alleviating the data 

poisoning attacks which can further be developed for data authentication purpose. Sparse-AE (SAE) 

was implemented in this study to convert the data into novel encryption formats so as to avoid the 

intrusion attacks. In anomaly detection engine, the SLSTM was utilized for both evaluation and 

training the outcomes. Lastly, a comparative analysis was conducted. The authors [16] introduced the 

Quantum Dwarf Mongoose Optimizer with an Ensemble-DL-based ID (QDMO-EDLID) system in the 

CPS infrastructure. For the purpose of subset Feature Selection (FS), the QDMO-EDLID method 

utilized the QDMO technique. Additionally, Deep-AE (DAE), Deep Belief Networks (DBN), and an 

ensemble of Convolution Residual Networks (CRN) algorithms were also incorporated in this study 

for intrusion classification method. 

In the study conducted earlier [17], the authors intended to overcome the security shortage and 

suggested an experience-based DL method to provide the DDoS, DoS and other distinct types of 

attacks cover the ping-of-death attacks. The presented method employed the concept of IDS. 

Additionally, a nature-inspired control routing protocol called AntHocNet was evaluated with the rest 

of the algorithms for dependable communication. The authors [18] suggested an autonomous IDS that 

could proficiently identify the malicious attacks which invade the UAVs, with the help of the DCNN 

(UAV-IDS-DCNN) approach. In particular, this developed model deliberated the encoded Wi-Fi traffic 

data records with three categories of frequently-utilized UAVs namely, DBPower UDI UAVs, DJI 

Spark UAVs and Parrot Bebop UAVs. 

In literature, the authors [19] developed the new optimum Squeezenet model with Deep Neural 

Network (OSQNDNNs) technique for aerial image classification in the UAV systems. The presented 

OSQN-DNN method originally allowed the UAVs to seize the images using inbuilt imaging 

sensors. Also, the OSQN method was used as a feature extractor to originate a beneficial set of feature 

vectors. On the other hand, the Coyote Optimizer Algorithm (COA) was used to optimally pick the 

hyperparameters, tangled in the traditional SqueezeNet method. In the study conducted earlier [20], 

the issue of adversarial attacks upon the DL-based UAVs was discussed and dual adversarial attack 

models were developed against the regression methods in the UAVs. Sangeetha Francelin et al. [21] 

planned a new approach for introducing protected communication in the UAV Network (UAVN). At 

first, the UAVN was simulated following which the data transmission was executed among the nodes 

utilizing a routing track; hence, an optimum routing path was identified using the newly-invented 

Tunicate Swarm Political Optimization (TSPO) system. In literature [22], the authors developed a 

method to appreciate the effectual and secure transmission of mobile users' data, when organizing 

Mobile Edge Computing (MEC) servers with AI so as to help in processing the data on UAVs. 

3. The proposed method 

In the current study, the design and development of the HAOADL-UAVN technique are focused. 

The purpose of the proposed HAOADL-UAVN technique is to secure the communication in the UAV 

https://www.sciencedirect.com/topics/computer-science/data-authentication
https://www.sciencedirect.com/topics/engineering/anomaly-detection
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networks via threat detection. The HAOADL-UAVN approach comprises of four main processes 

namely min-max normalization approach, HAOA-based FS process, DBN-AE-based classification, 

and SOA-based hyperparameter tuning. Fig. 1 represents the entire process involved in the proposed 

HAOADL-UAVN method. 

3.1. Data normalization 

Initially, the network data is normalized through min-max normalization approach in which the 

input data is scaled up into a useful set-up. Normalization is an important stage that compares the data 

from different fields [23]. The process of normalization upgrades the data from a given domain to a 

range of 0 and 1.  

 

Figure 1. Overall process of the HAOADL-UAVN technique. 

Norm normalization Z-score, decimal scaling, median-mad, min-max, and mean-mad techniques 

are generally used in the normalization of data. In the current study, the min-max normalization 
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technique is used to rescale the properties from its domain to achieve novel values in the range of [0,1]: 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋−𝑋𝑚𝑖𝑛 

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
,         (1) 

where 𝑋  implies the input feature value and  𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  signifies the normalized features. The 

higher and lower sets of the input feature are denoted by 𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 correspondingly. 

3.2. HAOA-based feature selection 

For the feature selection process, the HAOA has been employed in this study. Each meta-heuristic 

method shares a common trait whereas the optimization process is separated into two phases (which 

are together named as the ‘searching step’) such as the exploitation and exploration phases [24]. 

Between these, the exploration step is required to seek the uncharted portions of the searching space 

whereas the exploitation step is in control of engaging the regions that have been already observed.  

AOA starts the optimization procedure using an arbitrarily-created solution space (as matrix 𝑋, 

but 𝑥𝑖𝑗  is a single performance, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑛)  whereas a better candidate outcome, 

previous best performer, from all the iterations is assumed. Addition, division, multiplication, and 

subtraction processes finalize the places with near-optimal performance besides the iteration 

trajectories. Primarily, the AOA elects the searching step by evaluating a co-efficient named Math 

Optimizer Accelerated (MOA) function, which is utilized in both exploitation as well as exploration 

steps: 

𝑀𝑂𝐴(𝐶𝐼𝑡𝑒𝑟) = Min + 𝐶𝐼𝑡𝑒𝑟 × (
Max−Min

𝑀−𝐼𝑡𝑒𝑟
).       (2) 

Here, 𝑀𝑂𝐴(𝐶_𝐼𝑡𝑒𝑟)  represents the function values at 𝑡ℎ𝑒 𝑡𝑡ℎ  iteration, 𝐶_𝐼𝑡𝑒𝑟  denotes the 

existing iteration spanning between one and the maximal iteration count, 𝑀_𝐼𝑡𝑒𝑟. The minimal and 

maximal outcomes of the enhanced function are represented by Min and Max correspondingly. 

Division (D) and Multiplication (M) operators were utilized from the exploration step. However, 

it arbitrarily surveyed the searching region from various sectors with a purpose to attain the optimum 

performance. These approaches are defined in Eq (3) and the searching stage is forced by the MOA 

function with a random integer, 𝑟1 > 𝑀𝑂𝐴 . In this step, the alternative operator (𝑀 )cannot be 

considered until the 1st operator (𝐷) finishes the existing task, controlled by a random integer, 𝑟2 <

0.5. Then, the 2nd operator (M) is utilized from the location D to complete the existing task. 

𝑥𝑖,𝑗 (𝐶𝐼𝑡𝑒𝑟 + 1) = {
𝑏𝑒𝑠𝑡(𝑥𝑗) ÷ (𝑀𝑂𝑃 + 𝜀) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑟2 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) × 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.  (3) 

Here, 𝜀  refers to any smaller integer, 𝜇  denotes the set control parameter, 𝑥𝑖,𝑗(𝐶−𝐼𝑡𝑒𝑟 + 1) 

corresponds to the 𝑖𝑡ℎ performance in the next iteration, 𝑥𝑖,𝑗(𝐶_𝐼𝑡𝑒𝑟) defines the 𝑗𝑡ℎ position of the 

𝑖𝑡ℎ performance in the existing iteration and 𝑏𝑒𝑠𝑡(𝑥𝑗) denotes the 𝑗𝑡ℎ position of the existing best 

outcome. 𝐿𝐵𝑗 and 𝑈𝐵𝑗 imply the lower and upper boundaries of the 𝑗𝑡ℎ position, correspondingly. 
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𝑀𝑂𝑃(𝐶𝐼𝑡𝑒𝑟) = 1 −
𝐶
𝐼𝑡𝑒𝑟

1
𝛼

𝑀−𝐼𝑡𝑒𝑟
1
𝛼

        (4) 

Here, Math Optimizer Probability MOP (𝐶_𝐼𝑡𝑒𝑟)  implies the function values during the 𝑡𝑡ℎ 

iteration, 𝐶_𝐼𝑡𝑒𝑟 indicates the existing iteration, 𝑀_𝐼𝑡𝑒𝑟 stands for the maximal iteration count and 

𝛼 defines the set parameter that is well known to track the exploitation accuracy with iterations. 

Then, the search space is utilized by leading a deep search using Subtraction (S) and Addition (A) 

searching strategies. In this study, the alternative operator (𝐴) cannot be reserved for consideration 

until the time, the 1st operator (𝑆) finishes its existing task (1st rule in Eq (5)), controlled by the arbitrary 

integer, 𝑟3 < 0.5 . Otherwise, the 2nd operator (A) is utilized from the location S to complete the 

existing task. 

𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟 + 1) = {
𝑏𝑒𝑠𝑡 (𝑥𝑗) − 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑟3 < 0.5

𝑏𝑒𝑠𝑡 (𝑥𝑗) + 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.   (5) 

To reiterate, once 𝑟1 > 𝑀𝑂𝐴, the purpose of the candidate’s outcomes differs from the near‐

optimal outcome. Once the 𝑟1 < 𝑀𝑂𝐴, it inclines to converge at the near‐optimal performance. The 

parameter MOA heavily increases from 0.2–0.9 so as to promote the exploitation and exploration 

phases. It is also important to note that the computation complexity of AOA stands at 

𝑂(𝑁 × (𝑀𝐿 + 1)).  

The current study involves the hybridization of AOA and ABC techniques since the latter can 

overcome the inadequate exploration ability of the former. In case of ABC algorithm, if the utilized 

bee cannot enhance the food source, then the source must be abandoned and the bee is converted into 

a scout. This outcome can be obtained using the limited control variable that defines a solution to be 

eliminated. Based on this particular process, the ABC algorithm accomplishes strong exploration 

whereas the exploration strength of the AOA technique gets enhanced on a similar mechanism that 

replaces the depleted solutions. Each solution that remained the same, even after so many rounds of 

iteration, is substituted by the pseudo-random solution. The HAOA approach exploits a similar limit 

control variable. Each performance in the hybrid mechanism is prolonged using a single feature named 

trial. These trial values are incremented, if the solution does not get improve during a certain round. 

Fitness Function (FF) assumes the number of features elected and the classification outcomes. It 

reduces the fixed dimension of the designated features and improves the classification accuracy. Thus, 

the FF is deployed in this study to estimate the specific solutions as given below.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 ×  𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 + (1 − 𝛼) ×
#𝑆𝐹

#𝐴𝑙𝑙_𝐹
.      (6) 

In Eq (6), 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒  denotes the classifier error rate based on the selected features. 

𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 is estimated as a percentage of improper classification to the number of classifications 

within [0,1]. #𝑆𝐹  represents the number of features chosen whereas #𝐴𝑙𝑙_𝐹  shows the overall 

number of features from the original dataset. 𝛼 controls the import of classification quality and subset 

length, where the value for 𝛼 is fixed to be 0.9. 
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3.3. Threat detection using classification model 

In this stage, security is attained via DBN-AE-based threat detection process. DBN is a 

combination of unsupervised networks namely, Restricted Boltzmann Machines (RBM) that perform 

a visible layer of the next layer as well as the Hidden Layer (HL) of all the sub-networks [25]. DBN 

architecture has an effective layer‐wise process that defines the dependence of the variable in the above 

layer. 

The DBN model performs logistic regression for classification using various hidden and visible 

RBM layers. At the beginning, the dissimilar feature spaces of the vector are mapped after which the 

RBM layer, trained in an unsupervised manner is retained with the feature dataset. Next, a fine 

adjustment is carried on. At last, the resultant feature vector of the RBM layer is considered as the 

input feature vector for the subsequent RBM layer.  

AE is a simple and three‐layered, unsupervised NN that is used for representative learning such 

as size reduction or FS and helps in rebuilding the input pattern in the outcome layer. 

Like the symmetrical structure, the input and output layers of the AE model are also similar in 

size. Compared to the visible layer, the hidden layer has a fewer number of neurons in the network 

model. Using less number of neurons, attempts are made to represent or encode the input in its compact 

form, which captures the relevant features of the input vector. 

Here, the AE can be trained using a BP model as in FFNN-based technique on MSE loss function. 

The training model includes coding and decoding stages. During the coding stage, the input is encoded 

in a hidden depiction based on the principles of lower half layer. During the decoding stage, a similar 

input is used as an attempt to reconstruct from coding representation by applying the weight conditions 

of the upper half layer.  

Assume 𝑋  denotes the data with 𝑛  samples and 𝑚  number of features. 𝑌  refers to the 

encoder. The accurate representation of the encoding and decoding layers for AE is shown in Eqs (7) 

and (8), correspondingly. 

𝑌 = 𝑓(𝑤𝑋 + 𝑏),           (7) 

𝑋́ = 𝑔(𝑤́𝑌 + 𝑏).           (8) 

Here 𝑤  and 𝑏  denote the adjustable parameters, the activation functions are 𝑓  and 𝑔 , the 

recreated input vector in the output layer is denoted by 𝑋́, and the transposed weight (𝑋́) is denoted 

by  𝑊. 

AE training process is inclusive of finding the 𝑤  and 𝑏  parameters that reduce the error 

between the input data 𝑋 and the reconstruction data, 𝑋́. 

The DBN-AE structure has two most important parts while the AE can be utilized as a DL 

algorithm for feature extraction process. 

The encoding part of the AE is used to extract the feature, which signifies the characteristics of 

the input data. The extracted feature is then fed into the DBN for detection. Before training the DBN 

detection model, the AE is separately trained to attain the weight matrices. The decoding part of the 

AE is utilized to verify the features extracted so as to recreate the new data. Next, the attained weight 

matrices for AE are integrated with the DBN mechanism and are lastly trained using the input datasets 

used for detection. Figure 2 illustrates the infrastructure of the DBN-AE model. 
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Figure 2. Architecture of the DBN-AE model. 

3.4. Hyperparameter tuning 

Eventually, the hyperparameters for the DBN-AE algorithm are selected with the help of SOA. 

The hyperparameters chosen by the SOA include learning rate, batch size, and the number of epochs. 

SOA is a novel nature‐inspired optimization algorithm that gains its inspiration from the aggressive 

migration behavior of the seagulls [26]. SOA has better search performance, simple in nature and easy 

to implement compared to the rest of the conventional techniques namely GA and PSO. Every 

individual seagull exemplifies the individual search entity in the search range and so the location of 

the seagull denotes a promising outcome to the optimization problems. The implementation of the SOA 

method is as follows.  

Migration behavior (global search): The seagulls move around from one location to another 

during the seagull migration period. This migration behavior must fulfill three conditions as given 

below: 

Avoiding collision. In order to prevent collision among the neighboring seagulls, an additional 

parameter 𝐴 is established so as to update the seagull’s position during the iterative computation: 

𝑁⃗⃗ s = 𝐴 ⋅ 𝑃𝑠
⃗⃗  ⃗(𝑖).           (9) 

In Eq (9), the new position is represented by 𝑁⃗⃗ ; the existing position of the seagull is indicated 

by 𝑃𝑠
⃗⃗  ⃗(𝑖); the existing iteration count is 𝑖 and the seagull’s movement in the given search range is 𝐴. 

The computation process is given below. 

𝐴 = 𝑓𝑐 − 𝑖 ⋅ (
𝑓𝑐

Max𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
).         (10) 

In Eq (10), the control frequency of the parameter 𝐴 is 𝑓𝑐 that lies in the range of [0, 𝑓𝑐]. Usually, 

𝑓𝑐  is fixed as 2; 𝑖 = 0,1,2⋯Max𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  where 𝑖  implies the existing iteration count and 

Max𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 indicates the maximal iteration count. 

Moving towards the best neighbor: The seagulls move to a better neighbor thus avoid any 

collisions between the neighboring seagulls. 
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𝐵⃗ 𝑆 = 𝐵 ⋅ (𝑃⃗ 𝑔𝑆(𝑖) − 𝑃𝑠
⃗⃗  ⃗(𝑖)).        (11) 

In Eq (11), 𝐵𝑆
⃗⃗⃗⃗  denotes the direction in which the seagull moves from 𝑃𝑠

⃗⃗  ⃗(𝑖) original location to 

𝑃⃗ 𝑔𝑆(𝑖), the best neighboring location. 𝐵 is a random variable that balances the global and local search 

as given below.  

𝐵 = 2 ⋅ 𝐴2 ⋅ 𝑟𝑑.          (12) 

Here, 𝑟𝑑 is a randomly generated number within [0,1]. 

Moving towards the optimum location. The seagull updates its location, according to the optimal 

location. 

𝐷⃗⃗ s = |𝑁⃗⃗ s(𝑖) + 𝐵𝑠
⃗⃗⃗⃗ (𝑖)|.         (13) 

In Eq (13), the distance between the existing and the global optimal location is represented by 

𝐷⃗⃗ 𝑠. 

Aggressive behavior (local search): Once the seagull attacks its prey during flight, then it develops 

a spiral formation from the air. Such behavior is detailed through the Eqs (14)–(17).  

𝑥 = 𝑟 ∙ sin𝑘,           (14) 

𝑦 = 𝑟 ⋅ cos𝑘,          (15) 

𝑧 = 𝑟 ⋅ 𝑘,           (16) 

𝑟 = 𝑢 ⋅ 𝑒𝑘⋅𝑣,           (17) 

Here, the spiral circle designed by the seagull swarm is  𝑟 ; a random integer in the interval 

[0,2𝜋] is 𝑘; the constants 𝑣 and 𝑢 define the spiral shape; and the base of the natural logarithm is 

represented by 𝑒. 

𝑃𝑠
⃗⃗  ⃗(𝑖) = 𝑥 ⋅ 𝑦 ⋅ 𝑧 ⋅ 𝐷⃗⃗ s + 𝑃⃗ 𝑔𝑆(𝑖).        (18) 

In Eq (18), the attack location of the seagull is denoted by 𝑃𝑠
⃗⃗  ⃗(𝑖) which represents the finally 

updated location.  

The SOA approach derives the FF to obtain the effective classification outcomes. It explains a 

positive integer to describe the high accuracy of the resultant candidate. At this point, the reduction in 

classifier error rates is specified as the FF. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) =
𝑁𝑜.𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100   (19) 

4. Performance validation 

The performance of the proposed HAOADL-UAVN system was examined using dual datasets [27] 

i.e., NSL-KDD and TON-IoT datasets. The NSL-KDD dataset has different classes such as 

Unauthorized Access to Root (U2R), Unauthorized Access from a Remote Machine (R2L), 

Surveillance and Probing (Probe), Denial of Service (DoS), and normal. Next, the TON_IoT dataset 
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encompasses several classes such as backdoor, Distributed Denial of Service (DDoS), DoS, injection 

attack, Man-in-the-Middle (MITM), Password, Ransomware, Scanning, Cross-Site Scripting (XSS), 

and benign.  

Figure 3 showcases the classification outcomes of the HAOADL-UAVN technique, when using 

the NSL-KDD database. Figures 3a and b describe the confusion matrices delivered by the HAOADL-

UAVN algorithm on 80:20 of the TRPH/TSPH. The outcomes infer that the HAOADL-UAVN 

approach identified and categorized all the five class labels with high accuracy. Equally, Figure 3c 

showcases the PR examination outcomes achieved by the HAOADL-UAVN technique. The 

experimental values indicate that the HAOADL-UAVN approach yielded better PR values for all the 

classes. Moreover, Figure 3d exhibits the ROC examination results attained by the HAOADL-UAVN 

approach. The simulation outcomes characterize that the HAOADL-UAVN methodology produced 

adept results with the highest ROC outcomes for diverse classes. 

 

Figure 3. (a and b) Confusion matrices and (c and d) PR and ROC curves of the NSL-

KDD database. 

The intrusion detection analysis was conducted upon HAOADL-UAVN algorithm using the NSL-

KDD database and the results are shown in Table 1 and Figure 4. The simulation outcomes imply that 

the HAOADL-UAVN system properly detected the intrusions. With 80% TRPH, the HAOADL-UAVN 

methodology achieved an average 𝑎𝑐𝑐𝑢𝑦 of 99.26%, 𝑝𝑟𝑒𝑐𝑛 of 86.25%, 𝑟𝑒𝑐𝑎𝑙 of 80.72%, 𝐹𝑠𝑐𝑜𝑟𝑒 

of 82.41% and an 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 90.07%. Additionally, with 20% TSPH, the HAOADL-UAVN model 

delivered an average 𝑎𝑐𝑐𝑢𝑦  of 99.32%, 𝑝𝑟𝑒𝑐𝑛  of 86.27%, 𝑟𝑒𝑐𝑎𝑙  of 81.04%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 82.68% 

and an 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 90.26%, respectively. 
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Table 1. Intrusion detection outcomes of the HAOADL-UAVN algorithm on NSL-KDD database. 

Classes 𝐴𝑐𝑐𝑢𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹𝑆𝑐𝑜𝑟𝑒 𝐴𝑈𝐶𝑆𝑐𝑜𝑟𝑒 

TRPH (80%) 

U2R 99.82 47.25 20.38 28.48 60.17 

R2L 99.55 90.92 91.13 91.02 95.45 

Probe 99.08 95.89 94.33 95.10 96.95 

DoS 98.94 98.35 98.69 98.52 98.88 

Normal 98.90 98.82 99.06 98.94 98.89 

Average 99.26 86.25 80.72 82.41 90.07 

TSPH (20%) 

U2R 99.86 44.44 19.51 27.12 59.74 

R2L 99.66 94.24 92.51 93.37 96.18 

Probe 99.11 95.13 95.44 95.29 97.47 

DoS 98.98 98.61 98.57 98.59 98.89 

Normal 99.01 98.93 99.15 99.04 99.00 

Average 99.32 86.27 81.04 82.68 90.26 

 

Figure 4. Average values of the HAOADL-UAVN algorithm on NSL-KDD database. 

Figure 5 shows the 𝑎𝑐𝑐𝑢𝑦 curves for training (TR) and validation (VL) datasets, plotted by the 

HAOADL-UAVN algorithm upon the NSL-KDD database. The figure provides valuable insights 

about the effectiveness of the method under several epochs. Mainly, this outcome denotes a reliable 

development of the TR and TS 𝑎𝑐𝑐𝑢𝑦  values based on the increasing number of epochs, thus 

establishing the capability of the model to absorb and recognize the designs from both TR and TS 

datasets. The increasing trends in TS 𝑎𝑐𝑐𝑢𝑦  underline the flexibility of the model upon the TR 

database, its capability to make precise estimates on the hidden data, the ability to emphasize robust 

generalization. 
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Figure 5. 𝐴𝑐𝑐𝑢𝑦 curve of the HAOADL-UAVN algorithm on NSL-KDD database. 

Figure 6 illustrates the wide-ranging results of TR and TS loss values attained by the HAOADL-

UAVN algorithm upon the NSL-KDD database across many epochs. The TR loss got gradually 

declined as the model improved its ability to minimize the classification faults in the database. The 

loss curves reveal the model's arrangement with the TR data, thus establishing its capability to capture 

the designs in an efficient manner. It is significant to note that the parameters in the HAOADL-UAVN 

algorithm got continuously altered in order to minimize the differences between the estimates and 

definite TR labels. 

 

Figure 6. Loss curve of the HAOADL-UAVN algorithm on the NSL-KDD database. 

The comparison study of the HAOADL-UAVN methodology and other models was conducted 

upon the NSL-KDD database and the results are portrayed in Table 2 and Figure 7 [28,29]. The results 

indicate the ineffectual performance of the LR model. Next to that, the KNN, CNN, and DCA models 

exhibited a moderate performance. Although the LSTM_RNN model accomplished reasonable results, 

the HAOADL-UAVN technique achieved the maximum outcomes with an 𝑎𝑐𝑐𝑢𝑦 of 99.32%, 𝑝𝑟𝑒𝑐𝑛 

of 86.27%, 𝑟𝑒𝑐𝑎𝑙 of 81.04%, and an 𝐹𝑠𝑐𝑜𝑟𝑒 of 82.68%. 
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Table 2. Comparative analysis outcomes of the HAOADL-UAVN method and other 

models upon the NSL-KDD database. 

NSL-KDD Database 

Methods 𝐴𝑐𝑐𝑢𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹𝑆𝑐𝑜𝑟𝑒 

HAOADL-UAVN 99.32 86.27 81.04 82.68 

LSTM_RNN Model 95.91 83.37 76.75 76.54 

Logistic Regression 78.60 85.54 77.99 76.72 

KNN Model 82.18 73.84 79.12 76.60 

CNN Model 86.54 84.04 78.03 76.91 

DCA Model 89.77 85.2 79.87 78.37 

 

Figure 7. Comparative analysis outcomes of the HAOADL-UAVN methodology under 

NSL-KDD database. 

Figure 8 shows the classification outcomes of the HAOADL-UAVN approach for the TON_IoT 

dataset. Figures 8a and b show the confusion matrices obtained by the HAOADL-UAVN technique on 

80:20 TRPH/TSPH. The experimental values infer that the HAOADL-UAVN technique recognized 

and characterized all the ten classes. Likewise, Figure 8c shows the PR study outcomes achieved by 

the HAOADL-UAVN technique. The result is definite that the HAOADL-UAVN method produced the 

maximum PR values for all the classes. Furthermore, Figure 8d displays the ROC examination results 

of the HAOADL-UAVN methodology. The results reveal that the HAOADL-UAVN method caused 

adept consequences with peak ROC values under separate classes. 
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Figure 8. (a and b) Confusion matrices and (c and d) PR and ROC curves of the TON_IoT 

dataset. 

The intrusion detection outcomes of the HAOADL-UAVN method upon the TON_IoT database 

are portrayed in Table 3 and Figure 9. The outcomes specify that the HAOADL-UAVN system 

correctly identified the intrusions. With 80% TRPH, the HAOADL-UAVN technique delivered an 

average 𝑎𝑐𝑐𝑢𝑦  of 98.98%, 𝑝𝑟𝑒𝑐𝑛  of 94.92%, 𝑟𝑒𝑐𝑎𝑙  of 94.91%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 94.91% and an 

𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 97.17%. Moreover, with 20% TSPH, the HAOADL-UAVN method produced an average 

𝑎𝑐𝑐𝑢𝑦  of 99.03%, 𝑝𝑟𝑒𝑐𝑛  of 95.16%, 𝑟𝑒𝑐𝑎𝑙  of 95.16%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 95.14% and an 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒  of 

97.31%. 

Table 3. Intrusion detection outcomes of the HAOADL-UAVN algorithm using the 

TON_IoT dataset. 

Classes 𝐴𝑐𝑐𝑢𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹𝑆𝑐𝑜𝑟𝑒 𝐴𝑈𝐶𝑆𝑐𝑜𝑟𝑒 

TRPH (80%) 

Backdoor 98.85 93.31 95.40 94.34 97.32 

DDoS 99.04 95.39 95.04 95.21 97.26 

DoS 99.28 96.66 95.92 96.29 97.78 

Injection 98.98 95.10 94.87 94.99 97.16 

MITM 98.84 93.95 94.53 94.24 96.93 

Password 99.09 96.23 94.68 95.45 97.13 

Ransomware 98.98 94.63 95.33 94.98 97.36 

Continued on next page 
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Classes 𝐴𝑐𝑐𝑢𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹𝑆𝑐𝑜𝑟𝑒 𝐴𝑈𝐶𝑆𝑐𝑜𝑟𝑒 

TRPH (80%) 

Scanning 99.02 94.67 95.62 95.14 97.51 

XSS 98.89 94.61 94.01 94.31 96.71 

Benign 98.88 94.68 93.70 94.19 96.57 

Average 98.98 94.92 94.91 94.91 97.17 

TSPH (20%) 

Backdoor 98.75 92.12 95.41 93.73 97.26 

DDoS 98.75 93.78 93.30 93.54 96.32 

DoS 99.10 96.26 95.37 95.81 97.46 

Injection 99.05 95.51 93.92 94.71 96.74 

MITM 98.90 92.20 96.92 94.50 98.02 

Password 99.50 98.40 96.35 97.37 98.09 

Ransomware 99.05 94.21 95.72 94.96 97.56 

Scanning 99.30 96.98 96.02 96.50 97.84 

XSS 98.85 96.17 93.06 94.59 96.30 

Benign 99.05 95.93 95.50 95.71 97.49 

Average 99.03 95.16 95.16 95.14 97.31 

 

Figure 9. Average values of the HAOADL-UAVN algorithm on the TON_IoT database. 

The 𝑎𝑐𝑐𝑢𝑦 curves for TR and VL datasets are shown in Figure 10 for the HAOADL-UAVN 

algorithm using the TON_IoT dataset. The outcomes deliver valuable insights about its effectiveness 

with different count of epochs. Mainly, the proposed model achieved reliable improvement in both TR 

and TS 𝑎𝑐𝑐𝑢𝑦 values with an increase in the number of periods. This phenomenon signifies the ability 

of the model to learn and recognize the patterns in TR and TS datasets. The rising trends in TS 𝑎𝑐𝑐𝑢𝑦 

underline the flexibility of the model to TR dataset, its aptitude for producing precise forecasts on 

unnoticed data and underscoring its strong generalization competencies. 
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Figure 10. 𝐴𝑐𝑐𝑢𝑦 curve of the HAOADL-UAVN algorithm on the TON_IoT dataset. 

Figure 11 shows an extensive overview of the TR and TS loss values of the HAOADL-UAVN 

algorithm upon the TON_IoT dataset across dissimilar number of epochs. The TR loss values 

progressively decrease as the model expands its abilities to reduce the classification errors under the 

datasets. The loss curves exemplify the configuration of the model with TR data, thus emphasizing its 

capacity to capture the outlines successfully. It is significant to observe that the HAOADL-UAVN 

algorithm constantly modified the limits in order to minimize the differences between the forecasted 

values and the actual TR labels. 

 

Figure 11. Loss curve of the HAOADL-UAVN algorithm on the TON_IOT dataset. 

In Table 4 and Figure 12, the comparative analysis outcomes achieved by the HAOADL-UAVN 

model and other models using the TON_IoT database are depicted. The outcomes designate the 

incompetent performance of the LR. Next to that, the KNN, CNN, and DCA approaches displayed the 

modest outcomes. Although the LSTM_RNN technique achieved reasonable results, the HAOADL-

UAVN method displayed the maximum results with an 𝑎𝑐𝑐𝑢𝑦 of 99.03%, 𝑝𝑟𝑒𝑐𝑛 of 95.16%, 𝑟𝑒𝑐𝑎𝑙 

of 95.16%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 95.14%. Therefore, the HAOADL-UAVN technique has been proved that it 
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can be employed for secure UAV networks. 

Table 4. Comparative analysis results of the HAOADL-UAVN method with other models 

using the TON_IoT dataset. 

TON_IoT Dataset 

Methods 𝐴𝑐𝑐𝑢𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹𝑆𝑐𝑜𝑟𝑒 

HAOADL-UAVN 99.03 95.16 95.16 95.14 

LSTM_RNN Model 98.80 81.50 93.80 88.80 

Logistic Regression 89.20 90.70 93.00 93.80 

KNN Model 95.70 90.00 94.60 92.30 

CNN Model 96.79 94.64 94.09 94.54 

DCA Model 96.65 94.05 92.96 93.24 

 

Figure 12. Comparative outcomes of the HAOADL-UAVN methodology under the 

TON_IoT dataset. 

5. Conclusions 

In the current study, the authors focused on designing and developing the HAOADL-UAVN 

technique. The purpose of the HAOADL-UAVN technique is to secure the communication in the UAV 

networks via threat detection. The HAOADL-UAVN approach comprises of four main processes 

namely, min-max normalization, HAOA-based FS, DBN-AE-based classification, and SOA-based 

hyperparameter tuning. Initially, the normalization of the network data is conducted through min-max 

normalization approach in order to scale the input data into a useful set-up. The HAOA is used to select 

an optimal set of features. Next, the security is attained via DBN-AE-based threat detection. Eventually, 

the hyperparameters of the DBN-AE algorithm are selected with the help of the SOA. A huge array of 

simulations was conducted upon the benchmark databases to demonstrate the improved performance 

of the HAOADL-UAVN model. The comprehensive results establish the supremacy of the HAOADL-

UAVN methodology under distinct evaluation metrics. In the future, the HAOADL-UAVN system can 

be protracted to handle dynamic and developing threat landscapes, thus improving its adaptability. 

Furthermore, the integration of the model with real-time data streams and innovative anomaly 
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detection models would strengthen its skills in safeguarding the UAV systems. Moreover, identifying 

the applicability of the HAOADL-UAVN model in various operational atmospheres and scaling its 

efficacy for superior UAV fleets are potential avenues for future studies. 
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